Complex Analysis Qualifying Examination

7 August 2019

1. State Picard's great theorem, the Riemann mapping theorem, and the Schwarz lemma.
2. Find necessary and sufficient conditions on a pair of complex numbers α and β for validity of the following property:

$$
|\alpha z+\beta \bar{z}|=|z| \quad \text { for all values of the complex variable } z .
$$

3. The series $\sum_{n=1}^{\infty}\left(\frac{2 z}{z+1}\right)^{n}$ converges in some neighborhood of 0 to a function that admits an analytic continuation $f(z)$ to a neighborhood of the point -1 . Determine the value $f(-1)$.
4. How many zeros does the polynomial $z^{2019}+8 z+7$ have in the disk where $|z|<1$?
5. The analytic functions on the unit disk form a commutative ring under the operations of addition and multiplication. Prove that this ring is an integral domain. In other words, prove that if f is not the zero function and g is not the zero function, then the product $f g$ is not the zero function.
6. Prove that $\int_{-\infty}^{\infty} \frac{\log \left(1+x^{2}\right)}{4+x^{2}} d x=\pi \log (3)$.
7. Suppose f is a bounded holomorphic function on $\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$ (the right-hand half-plane), and f is periodic with period 1, that is, $f(z+1)=f(z)$ when $\operatorname{Re}(z)>0$. Prove that f must be a constant function.
8. Suppose a metric d is defined on the space of entire functions as follows:

$$
d(f, g)=\sum_{n=1}^{\infty} \min \left\{\frac{1}{2^{n}}, \max _{|z| \leq n}|f(z)-g(z)|\right\}
$$

Is the operator of differentiation (the operator sending f to f^{\prime}) continuous on this metric space of functions? Explain why or why not.
9. Suppose f is an entire function having the property that $(\operatorname{Re} f(z))^{2} \leq(\operatorname{Re} f(0))^{2}$ when $|z|<1$. Prove that f must be a constant function.
10. Determine the most general entire function f having the property that $|f(z)|=1$ when $\operatorname{Im}(z)=0$.

