Complex Analysis Qualifying Exam, August 2020

Problem 1: Let f be analytic in $\{z \in \mathbb{C}||z|<1\}$ and suppose $|f(z)| \leq 1$ for $|z|<1$. Show that $\left|f^{\prime}(0)\right| \leq 1-|f(0)|^{2}$.

Problem 2: Assume a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of meromorphic functions in a region $\Omega \subseteq \mathbb{C}$ converges in $C\left(\Omega, \mathbb{C}_{\infty}\right)$ to an analytic function f. Show that for every compact subset K of Ω, there is an integer n_{0} such that the poles of f_{n} lie in $\Omega \backslash K$ for $n \geq n_{0}$.

Problem 3: Suppose $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ when $|z|<1$. Show that if $\left|a_{4}\right|=2^{4} \max _{|z|=1 / 2}|f(z)|$, then $f(z)=a_{4} z^{4}$.

Problem 4: Use the argument principle to prove that a nonconstant polynomial of degree n has exactly n zeros when counted with multiplicity.

Problem 5: Show that

$$
\int_{-\infty}^{\infty} \frac{\sin ^{2}(x)}{x^{2}} d x=\pi
$$

Problem 6:

a) State the Monodromy Theorem, the Mittag-Leffler Theorem, and Montel's normality criterion.
b) Sketch a proof of one of the theorems in a).

Problem 7: Denote by Ω the union of the annuli $\{z \in \mathbb{C}|1<|z|<2\}$ and $\overline{\{z \in \mathbb{C} \mid 1}<|z-3|<2\}$, with the two intervals $(-2,-1)$ and $(4,5)$ removed.
a) Show that Ω is simply connected.
b) In view of a), every analytic function in Ω can be approximated locally uniformly by polynomials (Why?). If the analytic function is bounded, can the approximating sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ of polynomials be chosen so that $\sup _{n \in \mathbb{N}} \sup _{z \in \Omega}\left|p_{n}(z)\right|<\infty$? Justify your answer.

Problem 8: Let Ω be an open subset of $\mathbb{C}, \Omega \neq \mathbb{C}$, and suppose $\left\{c_{j}\right\}_{j=1}^{\infty}$ is dense in the boundary of Ω. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be the sequence $c_{1}, c_{1}, c_{2}, c_{1}, c_{2}, c_{3}, \cdots$, so that each c_{j} is repeated infinitely often. Show that if $\left\{b_{n}\right\}_{n=1}^{\infty} \subset \Omega$ is a
sequence such that $\sum_{n=1}^{\infty}\left|a_{n}-b_{n}\right|<\infty$, then $\Pi_{n=1}^{\infty} \frac{z-b_{n}}{z-a_{n}}$ represents an analytic function in Ω which cannot be continued analytically past any boundary point.

Problem 9: Prove that the equation $e^{z}-z^{2020}-1=0$ has infinitely many solutions.

Problem 10: Suppose a and b are distinct points in the complex plane. Let A_{1} be the family of all circles and lines through the pair of points a and b, and let A_{2} be the family of all circles and lines with respect to which a and b are symmetric. Show that if c is a third point in the plane, then there is precisely one element of A_{1} passing through c and precisely one element of A_{2} passing through c, and these two curves meet orthogonally.

