Complex Analysis Qualifying Exam, August 2021

<u>Problem 1:</u> Denote by L the real axis, by C, C_1 , and C_2 the circles $\{|z+i|=1\}, \{|z+1|=1\}, \text{ and } \{|z-1|=1\}, \text{ respectively.}$

Find a Möbius transformation that takes the pair (L, C) to the pair (C_1, C_2) . (Explain why the function you found has the required properties.)

<u>Problem 2</u>: Assume f is analytic on the unit disc and $\lim_{r\to 1^-} f(re^{i\theta}) = 0$, uniformly for $0 < \theta < \pi/3$. Show that $f \equiv 0$.

<u>Problem 3:</u> Suppose G is a bounded region. Let L be a straight line, so that $G \cap L$ is an interval on L. L divides \mathbb{C} into two open half planes Π_1 and Π_2 . Set $G_1 = \Pi_1 \cap G$ and $G_2 = \Pi_2 \cap G$. Show: if G_1 and G_2 are simply connected, then so is G.

<u>Problem 4</u>: Suppose f and g are analytic in a neighborhood of the closed unit disc $\overline{\mathbb{D}}$. Suppose further that f has a simple zero at $z_0 = 0$, and no other zeros on $\overline{\mathbb{D}}$. Set $f_{\varepsilon}(z) := f(z) + \varepsilon g(z)$. Show that if $|\varepsilon|$ is sufficiently small, then

a) f_{ε} has a unique zero in \mathbb{D} , and

b) if z_{ε} is this zero, then the map $\varepsilon \to z_{\varepsilon}$ is continuous.

<u>Problem 5:</u> Show that for $\xi \in \mathbb{R}$,

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x\xi}}{(1+x^2)^2} \, dx = \frac{\pi}{2} (1+2\pi |\xi|) e^{-2\pi |\xi|} \quad .$$

<u>Problem 6:</u> Let G be a bounded open set and $f: G \to G$ an analytic function. Complete the outline below to prove that if f has a fixed point z_0 (i.e. $f(z_0) = z_0$) with $f'(z_0) = 1$, then $f(z) \equiv z$.

a) You may assume that $z_0 = 0$.

b) Then, near 0,
$$f(z) = z + a_n z^n + \dots, n \ge 2$$
. Show that $\underbrace{f \circ f \circ f \cdots \circ f(z)}_{f \ge 1} = \frac{f \circ f \circ f \cdots \circ f(z)}_{f \ge 1}$

k times

 $z + ka_n z^n + \cdots$.

c) There is a constant C so that $k|a_n| \leq C$, $\forall k$.

<u>Problem 7:</u> Show that the series $\sum_{n\geq 1} \frac{(-1)^n}{z+n}$ defines an analytic function in $\mathbb{C}\setminus\{-1,-2,-3,\cdots\}$.

<u>Problem 8:</u> Let G be a domain, $f: G \to G$ biholomorphic, $z_0 \in G$, and γ a closed rectifiable curve homologous to zero in G. For $z_0 \in G \setminus \gamma$, show that the index $n(\gamma; z_0)$ equals $n(f(\gamma); f(z_0))$.

<u>Problem 9:</u> Let f be a meromorphic function on \mathbb{C} . Assume there are constants M, r, and an integer n such that $|f(z)| \leq M|z|^n$ for |z| > r, z not a pole. Show that f is a rational function.

<u>Problem 10:</u> State Mittag–Leffler's theorem, Runge's theorem, and the Riemann mapping theorem.