Complex Analysis Qualifying Examination

August 2022

1. Determine the maximum of the absolute value of the expression $z^{20}-z^{22}$ when the absolute value of the complex variable z is less than or equal to 2 .
2. Suppose $\sum_{n=1}^{\infty} c_{n} z^{n}$ is a power series in which for every positive integer n, the complex number c_{n} has the property that $n^{20} \leq\left|c_{n}\right| \leq n^{22}$. What can you say about the radius of convergence of the power series?
3. Prove that $\int_{0}^{\infty} \frac{x^{1 / 2}}{1+x^{2}} d x=\frac{\pi}{\sqrt{2}}$.
4. Find a linear fractional transformation T (in other words, a Möbius transformation) such that $T(0)=2, T(2)=0$, and $T(20)=22$.
5. If the function $\frac{1}{z^{20}-\sin \left(z^{22}\right)}$ is expanded in a Laurent series $\sum_{n=-20}^{\infty} c_{n} z^{n}$ converging in a punctured neighborhood of the origin, what is the value of the coefficient c_{2} ?
6. Determine every entire function f having the property that $|f(z)| \leq|\sin (z)|$ for all values of the complex variable z.
7. Consider the family of power series $\sum_{n=0}^{\infty} c_{n} z^{n}$ having radius of convergence equal to 22 . Must every sequence of holomorphic functions in this family have a subsequence that converges uniformly on the smaller disk $\{z \in \mathbb{C}:|z|<20\}$ to either a holomorphic function or infinity? Explain.
8. Suppose f is an entire function that maps the real axis into the real axis and maps the imaginary axis into the imaginary axis. Prove that the function f must be odd. In other words, $f(-z)=-f(z)$ for every complex number z.
9. Prove that infinitely many values of the complex variable z exist for which $\sin (z)=z$.
10. Prove that the punctured disk $\{z \in \mathbb{C}: 0<|z|<2\}$ cannot be mapped onto the annulus $\{z \in \mathbb{C}: 20<|z|<22\}$ by a bijective holomorphic function.
