Complex analysis qualifying exam, January 2010.

1. Give the statements of the following theorems:
(a) Montel's theorem;
(b) The Weierstrass factorization theorem.
2. Suppose that a function f is holomorphic in $\{0<|z-a|<r\}$ for some $r>0, a \in \mathbb{C}$ and that f^{\prime} / f has a pole of order one at a. Prove that then f has a pole or a zero at a.
3. Prove that all zeros of the function $\tan z-z$ are real.
4. Let $\left\{f_{n}\right\}$ be a sequence of holomorphic functions in a complex domain Ω. Suppose that $f_{n}(a)$ converges for some $a \in \Omega$ and that the functions $\Re f_{n}$ converge normally in Ω. Prove that then f_{n} converge normally in Ω.
5. Let $f_{1}, f_{2}, \ldots, f_{n}$ be holomorphic in a bounded complex domain Ω and continuous in the closure of Ω. Let $g=\left|f_{1}\right|+\left|f_{2}\right|+\ldots+\left|f_{n}\right|$.
a) Prove that the maximum of g is attained on the boundary of Ω.
b) Prove that if $g \equiv$ const in Ω then all f_{k} are constants.
6. Let f be a function holomorphic in the unit disk \mathbb{D} and continuous in the closure $\overline{\mathbb{D}}$.
a) Show that if $\Re f=0$ on ∂D then f is a constant.
b) Show that the previous statement becomes false if $\partial \mathbb{D}$ is replaced with a proper subarc of $\partial \mathbb{D}$.
7. Let entire functions f and g satisfy $e^{f}+e^{g} \equiv 1$. Prove that then both are constants.
8. Find a general formula for all functions $w(z)$ that map the domain $\Omega=\{|z|<1\} \backslash[1 / 2,1]$ conformally onto the domain $\{|\Im z|<1\}$.
9. Let u be a real-valued harmonic function in $\mathbb{C} \backslash\{0\}$. Show that then

$$
u(z)=c \log |z|+\Re f(z)
$$

for some real constant c and a function f holomorphic in $\mathbb{C} \backslash\{0\}$.
10. Prove that for a function $f: \mathbb{C} \rightarrow \hat{\mathbb{C}}$ it holds that

$$
\operatorname{res}_{z=a} f=-\operatorname{res}_{z=-a} f
$$

if f is even and that

$$
\operatorname{res}_{z=a} f=\operatorname{res}_{z=-a} f
$$

if f is odd. We assume that all the residues are correctly defined, i.e. f is holomorphic in a punctured neighborhood of a.

