Complex analysis qualifying exam, January 2012.

1. Give the statements of the following:
(a) The Mittag-Leffler theorem;
(b) Harnack's lemma.
2. Consider an infinite product

$$
\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

(a) Prove that the product converges normally in \mathbb{C}.
(b) Find the elementary entire function that the product converges to (prove your answer).
(c) Use the previous parts to prove Wallis' formula:

$$
\frac{\pi}{2}=\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \ldots
$$

3. Let $F=\left\{f_{a}\right\}_{a \in A}$ be a family of functions holomorphic in a neighborhood of the closed unit disk $\overline{\mathbb{D}}=\{|z| \leq 1\}$. Suppose that

$$
\int_{0}^{2 \pi}\left|f_{a}\left(e^{i \phi}\right)\right|^{1 / 2} d \phi \leq 1
$$

for any $a \in A$. Prove that F is a normal family in the unit disk $\mathbb{D}=\{|z|<1\}$.
4. Let γ be a closed curve in the right half-plane that has index N with respect to the point 1 . Find

$$
\int_{\gamma} e^{\frac{1}{z^{2}-1}} \sin (\pi z) d z
$$

5. Let $\Omega \neq \mathbb{C}$ be a simply-connected complex domain containing a point c. Let $\phi: \Omega \rightarrow \mathbb{D}$ be a conformal mapping such that $\phi(c)=0$. The function $g_{c}(z)=\log |\phi(z)|$ is called the Green function of Ω corresponding to c. Prove that $g_{a}(b)=g_{b}(a)$ for any $a, b \in \Omega$.
6. Write a formula for a conformal map from the upper half-plane to $\{z|\Re z>0,|\Im z|<1\}$.
7. Let F be an entire function such that

$$
|F(z)| \leq e^{|z|^{\lambda}}
$$

for some $\lambda>0$ and large enough $|z|$. Let $F(z)=\sum_{0}^{\infty} a_{n} z^{n}$ for all $z \in \mathbb{C}$. Prove that then

$$
\left|a_{n}\right| \leq\left(\frac{e \lambda}{n}\right)^{n / \lambda}
$$

for large enough n.
8. Let F be a function holomorphic and bounded in the upper half-plane \mathbb{C}_{+}. Suppose that F has period 1 $\left(F(z+1)=F(z)\right.$ for all $\left.z \in \mathbb{C}_{+}\right)$. Prove that $F(z)$ has a finite limit as $\Im z \rightarrow+\infty$.
9. Let $u(z)$ be a bounded harmonic function in \mathbb{D} such that the limit

$$
\lim _{r \rightarrow 1-} u\left(r e^{i \phi}\right)
$$

is equal to 1 for $0<\phi<\pi$ and to 0 for $\pi<\phi<2 \pi$. Find $u(1 / 2)$.
10. Let F be an entire function. We say that $a \in \mathbb{C} \cup\{\infty\}$ is an asymptotic value for F if there exists a continuous curve going from a finite point to infinity such that F tends to a along that curve. Prove that for any non-constant entire function ∞ is an asymptotic value.

