Complex Analysis Qualifying Examination

January 2013

1. Suppose $\sum_{n=0}^{\infty} a_{n} z^{n}$ is the Maclaurin series of the rational function $\frac{z}{1-z-z^{2}}$. Prove that the coefficient sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is the sequence of Fibonacci numbers $0,1,1,2,3,5$, $8,13, \ldots$ (defined by the property that each number is the sum of the preceding two).
2. When f and g are functions on the real line, the convolution $f * g$ is defined as follows:

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(x-t) g(t) \mathrm{d} t
$$

Prove that if $f(x)=\frac{1}{x^{2}+1}$ and $g(x)=\frac{1}{x^{2}+4}$, then $(f * g)(x)=\frac{3 \pi / 2}{x^{2}+9}$.
3. Suppose that $a_{0}>a_{1}>\cdots>a_{2013}>0$. Prove that $\sum_{n=0}^{2013} a_{n} z^{n} \neq 0$ when $|z| \leq 1$.
4. Suppose f is a biholomorphic map from the unit disk onto the horizontal strip where $-1<\operatorname{Im}(z)<1$, normalized such that $f(0)=0$. Determine the value of $\left|f^{\prime}(0)\right|$.
5. Let \mathcal{F} denote the family of power series $\sum_{n=1}^{\infty} a_{n} z^{n}$ for which $\left|a_{n}\right| \leq n$ for every positive integer n. Is \mathcal{F} a normal family in the open unit disk? Explain why or why not.
6. Suppose f is a holomorphic function on $\{z \in \mathbb{C}: 0<|z|<1\}$, the punctured unit disk. Prove that if $\operatorname{Re}(f)$ is a bounded function, then f has a removable singularity at 0 .
7. Prove that every complex number is in the range of the entire function $e^{3 z}+e^{2 z}$.
8. Suppose f is holomorphic in the unit disk, and

$$
f(2 z)=2 f(z) f^{\prime}(z) \quad \text { whenever }|z|<1 / 2
$$

Prove that f is the restriction to the unit disk of some entire function.
9. Prove that if f is a holomorphic function in the unit disk such that $|f|$ is harmonic, then f must be constant.
10. State and prove one of the following theorems: Hadamard's three-circles theorem, the monodromy theorem, Hurwitz's theorem.

