Complex Analysis Qualifying Examination

January 2013

- 1. Suppose $\sum_{n=0}^{\infty} a_n z^n$ is the Maclaurin series of the rational function $\frac{z}{1-z-z^2}$. Prove that the coefficient sequence $\{a_n\}_{n=0}^{\infty}$ is the sequence of Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, 13, ... (defined by the property that each number is the sum of the preceding two).
- 2. When f and g are functions on the real line, the convolution f * g is defined as follows:

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - t)g(t) dt$$

Prove that if $f(x) = \frac{1}{x^2 + 1}$ and $g(x) = \frac{1}{x^2 + 4}$, then $(f * g)(x) = \frac{3\pi/2}{x^2 + 9}$.

- 3. Suppose that $a_0 > a_1 > \cdots > a_{2013} > 0$. Prove that $\sum_{n=0}^{2013} a_n z^n \neq 0$ when $|z| \le 1$.
- 4. Suppose f is a biholomorphic map from the unit disk onto the horizontal strip where -1 < Im(z) < 1, normalized such that f(0) = 0. Determine the value of |f'(0)|.
- 5. Let \mathcal{F} denote the family of power series $\sum_{n=1}^{\infty} a_n z^n$ for which $|a_n| \le n$ for every positive integer *n*. Is \mathcal{F} a normal family in the open unit disk? Explain why or why not.
- 6. Suppose f is a holomorphic function on $\{z \in \mathbb{C} : 0 < |z| < 1\}$, the punctured unit disk. Prove that if $\operatorname{Re}(f)$ is a bounded function, then f has a removable singularity at 0.
- 7. Prove that every complex number is in the range of the entire function $e^{3z} + e^{2z}$.
- 8. Suppose f is holomorphic in the unit disk, and

$$f(2z) = 2f(z)f'(z)$$
 whenever $|z| < 1/2$.

Prove that f is the restriction to the unit disk of some entire function.

- 9. Prove that if f is a holomorphic function in the unit disk such that |f| is harmonic, then f must be constant.
- 10. State and prove *one* of the following theorems: Hadamard's three-circles theorem, the monodromy theorem, Hurwitz's theorem.