Complex analysis qualifying exam, January 2014.

1. Give the statements of the following results:
(a) Montel's theorem;
(b) Harnack's lemma;
(c) Mittag-Leffler's theorem.
2. Let $f(z)$ be analytic in $\Omega=\{|z|>1\}$. Suppose that f satisfies $|f(z)|<|z|^{n}$ for all $z \in \Omega$ and for some $n>0$. Prove that either f has finitely many zeros in $\{|z|>2\}$ or f is identically zero.
3. Let f be an entire function that is not a polynomial. Denote

$$
M(r)=\max _{|z|=r}|f(z)| .
$$

Show that

$$
\lim _{r \rightarrow \infty} \frac{M(r / 2)}{M(r)}=0
$$

4. Let f and g be analytic functions in the same connected complex domain Ω. Suppose that $|f|=\Re g$ in Ω. Show that f and g are constants.
5. Consider the line in the z plane defined by the following equation:

$$
3 \Re(z)+4 \Im(z)=5 .
$$

Under the inversion that sends z to $1 / z$, this line transforms into a circle. Find the center and the radius of that circle.
6. Consider a rational function $f(z)=q(z) / p(z)$, where p is a polynomial of degree n and q is a polynomial of degree $n-2$ or less. If $z_{1}, z_{2}, \ldots, z_{n}$ are distinct roots of p, prove that the residues of f satisfy

$$
\sum_{k=1}^{n} \operatorname{Res}\left(f, z_{k}\right)=0 .
$$

7. Let f be an entire function. Prove that all the coefficients in the power series expansion of f at the origin are real if and only if f is real on the real line.
8. Find a biholomorphic map between the unit disk and the parabolic region in the z plane defined by the property that $\Im(z)>(\Re(z))^{2}$.
9. Use harmonic functions to prove the following statement: For any continuous function f on the unit circle $\mathbb{T}=\{|z|=1\}$ there exists a sequence of polynomials $p_{n}(z, \bar{z})$ of z and \bar{z} that converges to f uniformly on \mathbb{T} (The Weierstrass Approximation Theorem for the unit circle).
10. Show that there is no entire function of finite order, except the zero function, that has roots at all points z such that $\exp (\exp z)=1$.
