Complex Analysis Qualifying Examination

January 2015

1. Prove that if z is a complex number and k is a positive integer, then

$$
\left|\operatorname{Im}\left(z^{k}\right)\right| \leq k|\operatorname{Im}(z)||z|^{k-1} .
$$

2. There is a holomorphic function f such that $f(z) e^{f(z)}=z$ for every z in a neighborhood of the origin. Find the first three nonzero terms in the Maclaurin series of f.
3. Prove that $\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{\cos \theta} d \theta=\sum_{n=0}^{\infty} \frac{1}{\left(n!2^{n}\right)^{2}}$.
4. The following proposition is a special case of Jensen's generalization of the Schwarz lemma: If f is a holomorphic function that maps the open unit disk into itself, and if z_{1} and z_{2} are two zeroes of f in the unit disk, then

$$
|f(z)| \leq\left|\frac{\left(z-z_{1}\right)\left(z-z_{2}\right)}{\left(1-\bar{z}_{1} z\right)\left(1-\bar{z}_{2} z\right)}\right| \quad \text { when }|z|<1
$$

Prove this proposition.
5. Suppose f is an entire function such that the product $|\operatorname{Re} f||\operatorname{Im} f|$ is bounded. Prove that f must be a constant function.
6. Find a surjective holomorphic mapping from $\{z \in \mathbb{C}:|z|<1\}$ (the open unit disk) onto $\{z \in \mathbb{C}: 1<|z|\}$ (the complement of the closed unit disk). [Notice that the inversion $1 / z$ is not holomorphic at the origin. Moreover, the solution to this problem cannot possibly be an injective function.]
7. Suppose $u: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{R}$ is a nonconstant, real-valued harmonic function on the punctured plane. Prove that the image is all of \mathbb{R}.
8. Suppose f has a simple pole at the origin, and g denotes $1 / f$ (the reciprocal function). How is the residue at the origin of the composite function $f \circ g$ related to the residue at the origin of f ?
9. Let U denote $\{z \in \mathbb{C}: \operatorname{Im} z>0\}$, the open upper half-plane, and let f denote the restriction to U of the principal branch of the logarithm. Consider the sequence of iterates $f, f \circ f, f \circ f \circ f, \ldots$ Is this sequence of functions locally bounded in U ? Explain.
10. State two of the following three theorems: the monodromy theorem, Runge's approximation theorem, Hadamard's three-circles theorem.

