Complex Analysis Qualifying Examination

January 2016

1. State the following three theorems, with precise hypotheses and conclusions: the Schwarz reflection principle, Runge's theorem about polynomial approximation of holomorphic functions, and Mittag-Leffler's theorem about meromorphic functions with prescribed poles.
2. Suppose f is a holomorphic function on a connected open set, and $u=\operatorname{Re}(f)$. Prove that if the product $u \bar{f}$ is holomorphic, then f must be a constant function.
3. Suppose γ is a simple, closed, continuously differentiable curve. What are all the possible values of $\frac{1}{2 \pi i} \int_{\gamma} \frac{z}{z^{2}+1} d z$ for different choices of γ ? Explain.
4. An inequality from real calculus says that if $x \in \mathbb{R}$ and $|x| \leq \frac{\pi}{2}$, then $\frac{2}{\pi}|x| \leq|\sin (x)|$. Prove that this inequality extends to complex numbers: namely, if $z \in \mathbb{C}$ and $|z| \leq \frac{\pi}{2}$, then $\frac{2}{\pi}|z| \leq|\sin (z)|$.
5. A map is called proper when the inverse image of every compact set is compact. Prove that there does not exist a surjective proper holomorphic map $f: \mathbb{D} \rightarrow \mathbb{C}$, where \mathbb{D} denotes $\{z \in \mathbb{C}:|z|<1\}$, the open unit disk.
6. Give an example of a nonpolynomial entire function f such that the range of f is all of \mathbb{C}, but the range of f^{\prime}, the derivative, is not all of \mathbb{C}.
7. Does there exist a holomorphic function f on the region $\{z \in \mathbb{C}:|z|>1\}$ (the exterior of the unit disk) such that $(f(z))^{2016}=z+1$ for every point z in the region? Explain.
8. Suppose f is a holomorphic function on $\{z \in \mathbb{C}:|z|<1\}$, the open unit disk, with the property that $\operatorname{Re} f(z)>0$ for every point z in the disk. Prove that $\left|f^{\prime}(0)\right| \leq 2 \operatorname{Re} f(0)$.
9. Prove that $\int_{-\pi / 2}^{\pi / 2} \frac{1}{1+\sin ^{2} \theta} d \theta=\frac{\pi}{\sqrt{2}}$.
10. Suppose circles of radius r and radius s are externally tangent at the point $1 / 2$ and internally tangent to the unit circle. There are infinitely many such configurations, two of which are illustrated in the diagram below. Prove that $\frac{1}{r}+\frac{1}{s}=\frac{16}{3}$ for every such configuration.

