COMPLEX ANALYSIS QUALIFYING EXAM
 JANUARY 2017.

1. Show that $f(z)=4 / z$ is a bijection from $\{z:|z-1|>1,|z-2|<2\}$ to the strip $\{z: 1<\operatorname{Re}(z)<2\}$.
2. Prove the Analytic Convergence Theorem: Let $U \subset \mathbb{C}$ be an open, connected set and $\left\{f_{n}\right\}$ be a sequence of analytic functions on U. If $f_{n} \rightarrow f$ uniformly on every closed disk in U then f is analytic. Moreover, $f_{n}^{\prime} \rightarrow f^{\prime}$ pointwise on U and uniformly on every closed disk in U.
3. Fix $R>0$. Show that there exists an integer $n>0$ such that for all $m \geq n$ the polynomial $f_{m}(z)=\sum_{k=0}^{m} \frac{z^{k}}{k!}$ has no roots w with $|w|<R$.
4. Prove that

$$
\int_{0}^{\infty} \frac{\sin (x)}{x} d x=\frac{\pi}{2}
$$

5. State and prove the Schwarz lemma.
6. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ have radius of convergence $R<\infty$. Show that there exists a point w with $|w|=R$ such that f can not be analytically continued to any open set which contains w.
7. Can the function $\operatorname{Re}\left(z^{2}\right)$ be approximated uniformly on the unit circle $\{z:|z|=1\}$ by rational functions having only simple poles? Explain why or why not.
8. Let f be a non-constant, entire function such that $f(1-z)=1-f(z)$. Determine the image of f.
9. Let \mathcal{F} be a family of holomorphic functions on the open unit disk Δ. Suppose that $\mathcal{F}^{\prime}=$ $\left\{f^{\prime} \mid f \in \mathcal{F}\right\}$ is a normal family and there exists a point $p \in \Delta$ such that $\{f(p) \mid f \in \mathcal{F}\}$ is bounded. Is \mathcal{F} a normal family?
10. Let U be a connected, open set and $\left\{a_{n}\right\}$ be a sequence of distinct points in U which do not have a limit point in U. Fix an integer $k \geq 0$. Does there exist an analytic function f on U with prescribed values $f\left(a_{n}\right), \ldots, f^{(k)}\left(a_{n}\right)$ for each n ?
