COMPLEX ANALYSIS QUALIFYING EXAM JANUARY 2017.

- 1. Show that f(z) = 4/z is a bijection from $\{z : |z 1| > 1, |z 2| < 2\}$ to the strip $\{z : 1 < \text{Re}(z) < 2\}.$
- 2. Prove the Analytic Convergence Theorem: Let $U \subset \mathbb{C}$ be an open, connected set and $\{f_n\}$ be a sequence of analytic functions on U. If $f_n \to f$ uniformly on every closed disk in U then f is analytic. Moreover, $f'_n \to f'$ pointwise on U and uniformly on every closed disk in U.
- 3. Fix R > 0. Show that there exists an integer n > 0 such that for all $m \ge n$ the polynomial $f_m(z) = \sum_{k=0}^m \frac{z^k}{k!}$ has no roots w with |w| < R.
- 4. Prove that

$$\int_0^\infty \frac{\sin(x)}{x} \, dx = \frac{\pi}{2}$$

- 5. State and prove the Schwarz lemma.
- 6. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ have radius of convergence $R < \infty$. Show that there exists a point w with |w| = R such that f can not be analytically continued to any open set which contains w.
- 7. Can the function $\operatorname{Re}(z^2)$ be approximated uniformly on the unit circle $\{z : |z| = 1\}$ by rational functions having only simple poles? Explain why or why not.
- 8. Let f be a non-constant, entire function such that f(1-z) = 1 f(z). Determine the image of f.
- 9. Let \mathcal{F} be a family of holomorphic functions on the open unit disk Δ . Suppose that $\mathcal{F}' = \{ f' \mid f \in \mathcal{F} \}$ is a normal family and there exists a point $p \in \Delta$ such that $\{ f(p) \mid f \in \mathcal{F} \}$ is bounded. Is \mathcal{F} a normal family?
- 10. Let U be a connected, open set and $\{a_n\}$ be a sequence of distinct points in U which do not have a limit point in U. Fix an integer $k \ge 0$. Does there exist an analytic function f on U with prescribed values $f(a_n), \ldots, f^{(k)}(a_n)$ for each n?