1. Show that \(f(z) = 4/z \) is a bijection from \(\{ z : |z - 1| > 1, |z - 2| < 2 \} \) to the strip \(\{ z : 1 < \text{Re}(z) < 2 \} \).

2. Prove the Analytic Convergence Theorem: Let \(U \subset \mathbb{C} \) be an open, connected set and \(\{ f_n \} \) be a sequence of analytic functions on \(U \). If \(f_n \to f \) uniformly on every closed disk in \(U \) then \(f \) is analytic. Moreover, \(f'_n \to f' \) pointwise on \(U \) and uniformly on every closed disk in \(U \).

3. Fix \(R > 0 \). Show that there exists an integer \(n > 0 \) such that for all \(m \geq n \) the polynomial \(f_m(z) = \sum_{k=0}^{m} \frac{z^k}{k!} \) has no roots \(w \) with \(|w| < R \).

4. Prove that
\[
\int_0^\infty \frac{\sin(x)}{x} \, dx = \frac{\pi}{2}
\]

5. State and prove the Schwarz lemma.

6. Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) have radius of convergence \(R < \infty \). Show that there exists a point \(w \) with \(|w| = R \) such that \(f \) can not be analytically continued to any open set which contains \(w \).

7. Can the function \(\text{Re}(z^2) \) be approximated uniformly on the unit circle \(\{ z : |z| = 1 \} \) by rational functions having only simple poles? Explain why or why not.

8. Let \(f \) be a non-constant, entire function such that \(f(1 - z) = 1 - f(z) \). Determine the image of \(f \).

9. Let \(\mathcal{F} \) be a family of holomorphic functions on the open unit disk \(\Delta \). Suppose that \(\mathcal{F}' = \{ f' \mid f \in \mathcal{F} \} \) is a normal family and there exists a point \(p \in \Delta \) such that \(\{ f(p) \mid f \in \mathcal{F} \} \) is bounded. Is \(\mathcal{F} \) a normal family?

10. Let \(U \) be a connected, open set and \(\{ a_n \} \) be a sequence of distinct points in \(U \) which do not have a limit point in \(U \). Fix an integer \(k \geq 0 \). Does there exist an analytic function \(f \) on \(U \) with prescribed values \(f(a_n), \ldots, f^{(k)}(a_n) \) for each \(n \)?