Complex Analysis Qualifying Examination

7 January 2019

1. State (a) Runge's theorem about polynomial approximation, (b) Mittag-Leffler's theorem about prescribed singularities, and (c) Picard's great theorem.
2. Suppose $f(z)$ has an essential singularity when $z=0$, and $g(z)$ has an essential singularity when $z=0$. Prove that at least one of the functions $f(z)+g(z)$ and $f(z) g(z)$ has an essential singularity when $z=0$.
3. Suppose f is holomorphic on $\{z \in \mathbb{C}:|z|<1\}$ (the unit disk), and $|f(z)|<1$ when $|z|<1$. How large can $\left|f^{\prime}(1 / 7)\right|$ be?
4. Prove that on the region $\mathbb{C} \backslash\{x+0 i: x \in \mathbb{R}$ and $|x| \leq 1\}$ (the plane with a slit along the real axis from -1 to 1), there exists a holomorphic function $f(z)$ such that $f^{\prime}(z)=\frac{1}{1-z^{2}}$, but there does not exist a holomorphic function $g(z)$ such that $g^{\prime}(z)=\frac{z}{1-z^{2}}$.
5. Prove there are infinitely many values of the complex variable z for which $\sin (z)=\sin (i z)$.
6. Prove that if $t \in \mathbb{R}$, then $\lim _{t \rightarrow 0} \int_{-\infty}^{\infty} \frac{x \sin (t x)}{1+x^{2}} d x=\pi$.
7. Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is a nonconstant entire function. Which of the following sets must be countably infinite?
(a) $f(\mathbb{Z}) \quad$ (b) $f(\mathbb{Q})$
(c) $f^{-1}(\mathbb{Z})$
(d) $f^{-1}(\mathbb{Q})$

Explain why.
8. Suppose f is an entire function, and suppose the sequence of derivatives $f^{\prime}, f^{\prime \prime}, f^{(3)}, \ldots$ converges uniformly on compact sets to a limit function that is not identically zero. Prove the existence of a natural number N such that $f^{(n)}(z) \neq 0$ when $|z|<1$ and $n>N$.
9. Either construct or prove the existence of a biholomorphic mapping (an analytic bijection) from $\mathbb{C} \backslash\{x+0 i: x \in \mathbb{R}$ and $|x| \leq 1\}$ (the plane with a slit along the real axis from -1 to 1) onto $\{z \in \mathbb{C}: 0<|z|<1\}$ (the punctured unit disk).
10. Suppose f is an entire function with the property that $f(2 z)=\frac{f(z)+f(z+1)}{2}$ for all z. Prove that f must be a constant function.

