Complex Analysis Qualifying Exam, January 2020

Problem 1: Let $S=\left\{z \in \mathbb{C} \mid e^{e^{z}}=1\right\}$. Find the distance from S to the point i, that is, find $\inf _{z \in S}|z-i|$.

Problem 2: (a) Show that there exists an analytic function f in the open right half-plane such that $(f(z))^{2}+2 f(z) \equiv z^{2}$.
(b) Show that your function f can be continued analytically to a region containing the set $\{z \in \mathbb{C}||z|=3\}$.

Problem 3: Let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$, and $\left\{d_{n}\right\}$ be sequences of complex numbers for which $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=0$ and $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} d_{n}=$ 1. Prove that for n sufficiently large, the polynomials $p_{n}(z)=a_{n}+b_{n} z+$ $c_{n} z^{2}+d_{n} z^{3}$ have three distinct zeros.

Problem 4: Find all entire functions f which satisfy $f(0)=0, f^{\prime}(0)=1$ and the family of successive iterates $\{f, f \circ f, f \circ f \circ f, \ldots\}$ is normal. (The - denotes composition.)

Problem 5: f_{1} and f_{2} are analytic in the unit disc. Show that if $\left|f_{1}\right|^{2}+$ $\left|f_{2}\right|^{2} \equiv 1$, then f_{1} and f_{2} are constant.

Problem 6: (a) State (but do not prove) the Riemann mapping theorem.
(b) Let $a \in \mathbb{C}$ and $\Omega=\mathbb{C} \backslash\{a\}$. Can one map Ω analytically onto the unit disc? Justify your answer. If your answer is 'yes', find such a map.
(c) Let $\Omega=\mathbb{C} \backslash[0, \infty)$. Can one map Ω conformally (i.e. analytically, one-to-one) onto the unit disc? Justify your answer. If your answer is 'yes', find such a map.

Problem 7: (a) For $a \in \mathbb{C}$ with $0<|a|<1$ and $|z| \leq r<1$, show that

$$
\left|\frac{a+|a| z}{(1-\bar{a} z) a}\right| \leq \frac{1+r}{1-r} .
$$

(b) Let $\left\{a_{n}\right\}$ be a sequence of complex numbers with $0<\left|a_{n}\right|<1$ and $\sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right)<\infty$. Show that

$$
B(z)=\prod_{n=1}^{\infty} \frac{\left|a_{n}\right|}{a_{n}}\left(\frac{a_{n}-z}{1-\overline{a_{n}} z}\right)
$$

converges locally uniformly in the unit disc, and that $|B(z)| \leq 1$.
(c) What are the zeros of $B(z)$? Justify your answer.

Problem 8: Compute

$$
\int_{0}^{\infty} \frac{x^{1 / 3}}{(x+8)(x+1)^{2}} d x
$$

Problem 9: Suppose f is analytic in the strip $\{z \in \mathbb{C} \mid 0<\operatorname{Re}(z)<1\}$ and continuous on its closure. Show that if $f(i t)=f(1+i t) \forall t \in \mathbb{R}$, then there is an entire function g such that $f(z)=g(z), 0 \leq \operatorname{Re}(z) \leq 1$.

Problem 10: Show that there exists a sequence $\left\{f_{n}\right\}$ of entire functions with the following property: for each rational number $q \geq 0$, the sequence converges to \sqrt{q} uniformly on compact subsets of the line $\{z \in \mathbb{C} \mid \operatorname{Re}(z)=$ $q\}$.

