COMPLEX ANALYSIS QUALIFYING EXAM
 JANUARY 2021.

1. Let R denote the region between the circles $|z|=1$ and $|z-1 / 2|=1 / 2$. Find a conformal map from R to the open unit disk $|w|<1$.
2. Let f be an analytic function on the upper half-plane which maps the $\operatorname{line} \operatorname{Im}(z)=1$ to \mathbb{R} and satisfies the estimate $|f(z)|<\log (1+|z|)$. Show that f is constant.
3. State the maximum modulus principle and Riemann's removable singularity theorem. State and prove the Schwarz lemma.
4. Show that all of the zeros of the polynomial $p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ are contained in the disk $|z|<1+\max _{j}\left|a_{j}\right|$. (Cauchy, 1829).
5. Let f be analytic on the complex plane except for a finite set of poles S such that $S \cap \mathbb{Z}=\emptyset$. A standard procedure to evaluate $\sum_{n=-\infty}^{\infty} f(n)$ is to consider the sequence of integrals $\int_{C(n)} \pi \cot (\pi z) f(z) d z$ where $C(n)$ is the square with vertices $(n+1 / 2)(\pm 1 \pm i)$. Use this process to evaluate $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$, justifying all steps.
6. Show that $\Pi_{n=1}^{\infty}\left(1-e^{-n^{2}} e^{z n}\right)$ defines an entire function f. Denote by $\left\{a_{k}\right\}$ the zeros of f, listed with multiplicity, and by E_{p} the standard elementary factors. Find the smallest integer p such that the product $\Pi_{n=1}^{\infty} E_{p}\left(\frac{z}{a_{n}}\right)$ converges.
7. Prove that if E is a compact, connected subset of \mathbb{C}_{∞} (the Riemann sphere) that contains more than one point, then each connected component of $\mathbb{C}_{\infty}-E$ is biholomorphic to the unit disk.
8. Let f and g be entire functions such that $f^{4}-g^{4}=1$. Show that f and g are constant.
9. Show that the series $L_{2}(z)=\sum_{n=1}^{\infty} z^{n} / n^{2}$ can not be analytically continued to an open set containing the closed disk $\left\{z||z| \leq 1\}\right.$. Show that $L_{2}(z)$ has an analytic continuation to $\mathbb{C}-[1, \infty)$ which satisfies the functional equation

$$
L_{2}(1-z)=-L_{2}(z)-\log (z) \log (1-z)+\pi^{2} / 6
$$

which is valid on the complement of $(-\infty, 0] \cup[1, \infty)$.
10. If $f_{k}(z)=\sin (k z) / k$, is the family $\left\{f_{k}\right\}_{k=1}^{\infty}$ a normal family in the unit disk? Explain why or why not.

