Complex Analysis Qualifying Examination

January 2022

1. Prove the following formula obtained in 1776 by Charles Hutton:

$$
\frac{\pi}{4}=2 \arctan \left(\frac{1}{3}\right)+\arctan \left(\frac{1}{7}\right)
$$

2. Show that there are exactly two values of the complex variable z for which $\cos (z)=2$ and $|z|<2$.
3. Prove that if f is analytic in the punctured disk $\{z \in \mathbb{C}: 0<|z|<1\}$, and f has a pole at 0 , then the function e^{f} has an essential singularity at 0 .
4. Suppose that $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is harmonic, and $u(0,0)=0$. Show that for every positive ε, there exists a point (x, y) such that $0<x^{2}+y^{2}<\varepsilon$ and $u(x, y)=0$. In other words, a harmonic function cannot have an isolated zero.
5. Prove that if f is a nonconstant entire function, then

$$
\max _{|z|=1}\left|f(z)-\frac{1}{z}\right|>1 .
$$

6. Determine every entire function f satisfying the property that $|f(z)|=f(|z|)$ for all values of the complex variable z.
7. When n is a positive integer and $z \in \mathbb{C}$, let $f_{n}(z)$ denote $\left(\cos \left(z^{n}\right)\right)^{n}$. Is the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ a normal family in the open unit disk? Explain.
8. Construct a biholomorphic mapping from the half-infinite strip

$$
\{z \in \mathbb{C}: 0<\operatorname{Re}(z)<1 \text { and } 0<\operatorname{Im}(z)\}
$$

onto the unit disk.
9. Suppose f is an analytic function in the right-hand half-plane, the value $f(2)$ is positive, and $(f(z))^{2}+2 f(z)=z^{2}$ when $\operatorname{Re}(z)>0$. If f is continued analytically along the semicircle $2 e^{i t}, 0 \leq t \leq \pi$, then what is the value $f(-2)$? Explain.
10. State Runge's theorem on polynomial approximation, the Weierstrass factorization theorem for entire functions, and Picard's great theorem about essential singularities.

