\mathbb{D} denotes the unit disc B(0,1).

<u>Problem 1:</u> Let f be analytic in \mathbb{D} . Show that if $\sum_{n=0}^{\infty} |f^{(n)}(0)| < \infty$, then f is (the restriction of) an entire function.

Problem 2: Compute

$$\int_0^\infty \frac{x}{1+x^5} \, dx \; .$$

<u>Problem 3:</u> Suppose the open set $\Omega \subseteq \mathbb{C}$ contains $\overline{\mathbb{D}}$. Assume f is analytic in Ω , with n simple zeros in \mathbb{D} , and no zeros on $\partial \mathbb{D}$. Show: Re(f) has at least 2n zeros on $\partial \mathbb{D}$.

<u>Problem 4</u>: Find all Möbius transformations that map \mathbb{D} to itself and map the circle $\{z : |z - 2/5| = 2/5\}$ to a circle centered at the origin. Prove that you have found them all.

<u>Problem 5:</u> Let $f : \mathbb{D} \to \mathbb{D}$ be analytic, with f(a) = a and f(b) = b for two (distinct) points a and b in \mathbb{D} . Show that f(z) = z for all $z \in \mathbb{D}$.

<u>Problem 6:</u> Let f be analytic in the upper half plane and continuous on its closure. Assume that f satisfies the estimate $|f(z)| \leq M|z|^{-r}$, $z \neq 0$, for strictly positive constants M and r. Show that if Im(z) > 0, then

$$f(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(t)}{t-z} dt \, .$$

<u>Problem 7:</u> Let p(z) and q(z) be two polynomials, with $deg(p) = n \ge 1$. Define Ω to be the set of those points $z \in \mathbb{C}$ where the set $p^{-1}(z) := \{w : p(w) = z\}$ consists of n (distinct) points.

a) Show: Ω is open.

b) Show that $\tilde{q}(z) := q(w_1) + q(w_2) + \cdots + q(w_n)$ is analytic in Ω , where $\{w_1, w_2, \cdots, w_n\} = p^{-1}(z)$.

<u>Problem 8:</u> Let f be a meromorphic function in a neighborhood of $\overline{\mathbb{D}}$, with no pole on $\partial \mathbb{D}$. Prove that if $f(\partial \mathbb{D}) \subseteq \partial \mathbb{D}$, then f is a rational function.

<u>Problem 9:</u> Prove that there is no nonconstant harmonic function $u : \mathbb{C} \to \mathbb{R}$ such that $u(z) \leq 0$ for all $z \in \mathbb{C}$.

<u>Problem 10:</u> Since $\cos(z)$ is even, $\cos(\sqrt{z})$ is an entire function. Determine both the order and the genus of this function.