Complex Analysis Qualifying Exam, January 2023

\mathbb{D} denotes the unit disc $B(0,1)$.
Problem 1: Let f be analytic in \mathbb{D}. Show that if $\sum_{n=0}^{\infty}\left|f^{(n)}(0)\right|<\infty$, then f is (the restriction of) an entire function.

Problem 2: Compute

$$
\int_{0}^{\infty} \frac{x}{1+x^{5}} d x
$$

Problem 3: Suppose the open set $\Omega \subseteq \mathbb{C}$ contains $\overline{\mathbb{D}}$. Assume f is analytic in Ω, with n simple zeros in \mathbb{D}, and no zeros on $\partial \mathbb{D}$. Show: $\operatorname{Re}(f)$ has at least $2 n$ zeros on $\partial \mathbb{D}$.

Problem 4: Find all Möbius transformations that map \mathbb{D} to itself and map the circle $\{z:|z-2 / 5|=2 / 5\}$ to a circle centered at the origin. Prove that you have found them all.

Problem 5: Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be analytic, with $f(a)=a$ and $f(b)=b$ for two (distinct) points a and b in \mathbb{D}. Show that $f(z)=z$ for all $z \in \mathbb{D}$.

Problem 6: Let f be analytic in the upper half plane and continuous on its closure. Assume that f satisfies the estimate $|f(z)| \leq M|z|^{-r}, z \neq 0$, for strictly positive constants M and r. Show that if $\operatorname{Im}(z)>0$, then

$$
f(z)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{f(t)}{t-z} d t
$$

Problem 7: Let $p(z)$ and $q(z)$ be two polynomials, with $\operatorname{deg}(p)=n \geq 1$. Define Ω to be the set of those points $z \in \mathbb{C}$ where the set $p^{-1}(z):=\{w: p(w)=z\}$ consists of n (distinct) points.
a) Show: Ω is open.
b) Show that $\widetilde{q}(z):=q\left(w_{1}\right)+q\left(w_{2}\right)+\cdots+q\left(w_{n}\right)$ is analytic in Ω, where $\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}=p^{-1}(z)$.

Problem 8: Let f be a meromorphic function in a neighborhood of $\overline{\mathbb{D}}$, with no pole on $\partial \mathbb{D}$. Prove that if $f(\partial \mathbb{D}) \subseteq \partial \mathbb{D}$, then f is a rational function.

Problem 9: Prove that there is no nonconstant harmonic function $u: \mathbb{C} \rightarrow \mathbb{R}$ such that $u(z) \leq 0$ for all $z \in \mathbb{C}$.

Problem 10: Since $\cos (z)$ is even, $\cos (\sqrt{z})$ is an entire function. Determine both the order and the genus of this function.

