Complex Analysis Qualifying Examination

August 2008
All problems are worth 10 points.

1) Let

$$
f(z)=\frac{1}{z(z-1)(z-2)}
$$

Find the Laurent expansion of f valid in the annulus $\{z \in \mathbb{C}|1<|z|<2\}$.
2) Find a one-to-one conformal map of the region $\{z \in \mathbb{C}||z|<2$ and $| z-1 \mid>1\}$ onto the upper half plane.
3) Let f and g be zero-free functions on the unit disc. If $f^{\prime}(1 / n) / f(1 / n)=$ $g^{\prime}(1 / n) / g(1 / n)$ for all $n \in \mathbb{N}$, what can be said about the relation between f and g ? Prove your claim.
4) Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ have radius of convergence $r>0$. Assume that the function $f(z)$ to which it converges has exactly one singular point z_{0} on $\{z \in \mathbb{C}||z|=r\}$, and that z_{0} is a simple pole. Show that $\lim _{n \rightarrow \infty}\left(a_{n} / a_{n+1}\right)$ exists and equals z_{0}.
5) Evaluate

$$
\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x
$$

6) Fix the real number $\alpha>1$. Show that the equation

$$
\sin z=e^{\alpha} z^{3}
$$

has exactly three solutions in the unit disc.
7) a) Show that there exists exactly one germ $[f]_{0}$ of a holomorphic function in a neighborhood of 0 such that $f(0)=0$ and $f(z)=z+(1 / 2) f(z)^{2}$.
b) Show that this germ admits unrestricted analytic continuation in $\mathbb{C} \backslash\left\{\frac{1}{2}\right\}$.
c) Is there a holomorphic function g on $\mathbb{C} \backslash\left\{\frac{1}{2}\right\}$ such that $[g]_{0}=[f]_{0}$? Justify your answer.
8) In the right-hand half plane, suppose $f_{0}(z)=z$ and for each positive integer n, $f_{n}(z)$ is the principal branch of $z^{f_{n-1}(z)}$. Is there a neighborhood of the point 1 in which the family $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a normal family? Explain why or why not.
9) Prove that the range of the entire function $z^{2}+\cos (z)$ is all of \mathbb{C}.
10) Prove that if $K=\{x+i y \in \mathbb{C}| | x \mid \leq 1$ and $|y| \leq 1\}$, and $u(x, y)$ is a harmonic function in a neighborhood of K, then for every $\varepsilon>0$ there exists a harmonic polynomial $p(x, y)$ such that $\max _{(x, y) \in K}|u(x, y)-p(x, y)|<\varepsilon$.

