Complex analysis qualifying exam, January 2009.

1. Give the statements of the following theorems:
(a) Runge's theorem;
(b) the Mittag-Leffler theorem.
2. Let $f(z)$ be analytic in $\{|R e z|<1\}$ and continuous on the closure of that domain. Suppose that $f(z)$ is real on the lines $x= \pm 1$. Prove that then $f(z)$ can be analytically continued to the whole plane and that the resulting entire function satisfies $F(z+4)=F(z)$ for all $z \in \mathbb{C}$.
3. Let u and v be non-constant harmonic functions on a complex domain. Prove that $u v$ is harmonic if and only if $u+i c v$ is analytic for some real c. (Hint: one of the possible ways to prove the "only if" part is to consider f / g with $f=u_{x}-i u_{y}, g=v_{x}-i v_{y}$.)
4. Prove that for any $a \in \mathbb{C}$ and any integer $n \geq 2$ the polynomial $1+z+a z^{n}$ has at least one root in the disk $\{|z| \leq 2\}$. (Hint: use the Vieta theorem that says that the product of the roots of a monic polynomial is equal to its constant term in absolute value.)
5. Let f be an analytic function in the unit disk \mathbb{D} satisfying $0<|f(z)|<1$. Show that then for any $z \in \mathbb{D}$

$$
|f(z)| \leq|f(0)|^{\frac{1-|z|}{1+|z|}}
$$

(Hint: estimate $\log |f|$.)
6. Calculate the integral using residues:

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right) x^{1 / 3}}
$$

7. (a) Let f be a non-constant holomorphic function on a neighborhood of the closed unit disk such that $|f(z)|$ is constant on the unit circle. Prove that f has at least one zero in the unit disk.
(b) Find all entire f such that $|f|$ is constant on the unit circle.
8. Let $f(z)$ be analytic in the strip $\{|R e z|<\pi / 4\}$ and satisfy $f(0)=0,|f(z)|<1$. Prove that then $|f(z)| \leq|\tan z|$ for all z from the strip.
9. Let f be a holomorphic function in the unit disk \mathbb{D} that is injective and satisfies $f(0)=0$. Prove that there exists a holomorphic function g in \mathbb{D} such that $(g(z))^{2}=f\left(z^{2}\right)$ for all $z \in D$.
10. Let f be analytic in a bounded connected domain Ω and continuous in the closure of Ω. Suppose that the boundary of Ω consists of two disjoint smooth simple closed curves γ_{1} and γ_{2}. Prove that f has an analytic antiderivative in Ω if and only if $\int_{\gamma_{1}} f(z) d z=0$ (note that $\left.\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z\right)$.
