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Complex Analysis

1. ARITHMETIC, GEOMETRY, AND TOPOLOGY OF THE COMPLEX NUM-
BERS: Field operations; stereographic projection; spherical metric; simple and
multiple connectivity.

2. ANALYTIC FUNCTIONS: Cauchy–Riemann equations; power series; harmonic
functions.

3. COMPLEX INTEGRATION: Cauchy’s theorem; Goursat’s proof; Cauchy’s inte-
gral formula; residue theorem; computation of definite integrals by residues.

4. CONFORMAL MAPPING: linear fractional transformations and cross ratio; map-
pings by elementary functions; Riemann mapping theorem.

5. SINGULARITIES: classification of isolated singularities; Laurent series; Casorati–
Weierstrass theorem; Picard’s theorems.

6. GEOMETRIC FUNCTION THEORY: winding numbers and the argument prin-
ciple; open mapping theorem; maximum principle; Schwarz lemma; three-circles
theorem.

7. ANALYTIC CONTINUATION: Schwarz reflection principle; continuation along a
path; monodromy theorem.

8. CONVERGENCE AND APPROXIMATION: normal families; Hurwitz’s theorem;
Runge’s theorem; Mittag-Leffler’s theorem; infinite products; factorization theo-
rems of Weierstrass and Hadamard.
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