Real Analysis Qualifying Exam; August, 2009.

Work as many of these ten problems as you can in four hours. Start each problem on a new sheet of paper.
\#1. Evaluate the iterated integral

$$
\int_{0}^{\infty} \int_{0}^{\infty} x \exp \left(-x^{2}\left(1+y^{2}\right)\right) d x d y
$$

(Justify your answer.)
\#2. Let $f \in C[0,1]$ be real-valued. Prove that there is a monotone increasing sequence of polynomials $\left\{p_{n}(x)\right\}_{n=1}^{\infty}$ converging uniformly on $[0,1]$ to $f(x)$.
\#3. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of non-zero elements of $L^{2}[0,1]$. Prove that there is a function $g \in L^{2}[0,1]$ such that for all $n \geq 1$ we have

$$
\int_{0}^{1} g(x) f_{n}(x) d x \neq 0
$$

\#4. Let (X, Σ, μ) be a measure space with $\mu(X)<\infty$. Given sets $A_{i} \in \Sigma, i \geq 1$, prove that

$$
\mu\left(\bigcap_{i=1}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcap_{i=1}^{n} A_{i}\right) .
$$

Give an example to show that this need not hold when $\mu(X)=\infty$.
\#5. Let K be a compact subset of \mathbf{R}^{n} and describe the dual space of the Banach space $C(K)$. (You may choose either the real or the complex Banach space.)
Let $\mathbf{1} \in C(K)$ denote the constant function taking value 1 and let S be the subset of the dual space consisting of the positive bounded linear functionals on $C(K)$ that map $\mathbf{1}$ to 1. Show that the extreme points of S are the point evaluation maps, $f \mapsto f(x)$.
\#6. Let $\ell^{2}(\mathbf{Z})$ denote the real Hilbert space of square-summable functions on the integers. Let $x_{k}(k \geq 1)$ be a sequence in $\ell^{2}(\mathbf{Z})$ that converges coordinate-wise to zero, i.e., such that $\lim _{k \rightarrow \infty} x_{k}(n)=0$ for all $n \in \mathbf{Z}$.

Must x_{k} converge in norm to 0 as $k \rightarrow \infty$? What about if $\left\|x_{k}\right\|$ is assumed to be bounded? Must x_{k} converge weakly to 0 as $k \rightarrow \infty$? What about if $\left\|x_{k}\right\|$ is assumed to be bounded? Justify your answers (by proof or counter-example.)
\#7. Let X be a second countable (that is, having a countable basis of open sets) and normal topological space. Show that there is a countable family \mathcal{F} of countinuous functions from X into the interval $[0,1]$ that separates points and closed sets: i.e., such that if $x \in X$ and C is a closed subset of X with $x \notin C$, then there is $f \in \mathcal{F}$ such that $f(x)=0$ and $f(C) \subseteq\{1\}$.
\#8. Let $f \in L^{1}(0, \infty)$ and define

$$
h(x)=\int_{0}^{\infty}(x+y)^{-1} f(y) d y
$$

for $x>0$. Show that h is differentiable at all $x>0$ and show $h^{\prime} \in L^{1}(r, \infty)$ for every $r>0$. What about for $r=0$? (Justify your answer.)
\#9. Suppose X is a Banach space and Y is a normed linear space and $T: X \rightarrow Y$ is a linear map such that for every bounded linear functional $g \in Y^{*}$ we have $g \circ T$ is bounded. Show that T is bounded.
\#10. Let X be a real Banach space and suppose C is a closed subset of X such that
(i) $x_{1}+x_{2} \in C$ for all $x_{1}, x_{2} \in C$,
(ii) $\lambda x \in C$ for all $x \in C$ and $\lambda>0$,
(iii) for all $x \in X$ there exist $x_{1}, x_{2} \in C$ such that $x=x_{1}-x_{2}$.

Prove that, for some $M>0$, the unit ball of X is contained in the closure of

$$
\left\{x_{1}-x_{2} \mid x_{i} \in C,\left\|x_{i}\right\| \leq M,(i=1,2)\right\}
$$

Deduce that, for some $K>0$, every $x \in X$ can be written $x=x_{1}-x_{2}$, with $x_{i} \in C$ and $\left\|x_{i}\right\| \leq K\|x\|$, $(i=1,2)$. (In fact, any $K>M$ will do, but you need not show this.)

