Real Analysis Qualifying Exam; August, 2009.

Work as many of these ten problems as you can in four hours. Start each problem on a new sheet of paper.

#1. Evaluate the iterated integral

$$\int_0^\infty \int_0^\infty x \exp(-x^2(1+y^2)) \, dx \, dy.$$

(Justify your answer.)

#2. Let $f \in C[0,1]$ be real-valued. Prove that there is a monotone increasing sequence of polynomials $\{p_n(x)\}_{n=1}^{\infty}$ converging uniformly on [0,1] to f(x).

#3. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of non-zero elements of $L^2[0, 1]$. Prove that there is a function $g \in L^2[0, 1]$ such that for all $n \ge 1$ we have

$$\int_0^1 g(x) f_n(x) \, dx \neq 0.$$

#4. Let (X, Σ, μ) be a measure space with $\mu(X) < \infty$. Given sets $A_i \in \Sigma$, $i \ge 1$, prove that

$$\mu\big(\bigcap_{i=1}^{\infty}A_i\big) = \lim_{n \to \infty} \mu\big(\bigcap_{i=1}^n A_i\big).$$

Give an example to show that this need not hold when $\mu(X) = \infty$.

#5. Let K be a compact subset of \mathbb{R}^n and describe the dual space of the Banach space C(K). (You may choose either the real or the complex Banach space.)

Let $\mathbf{1} \in C(K)$ denote the constant function taking value 1 and let S be the subset of the dual space consisting of the positive bounded linear functionals on C(K) that map 1 to 1. Show that the extreme points of S are the point evaluation maps, $f \mapsto f(x)$.

#6. Let $\ell^2(\mathbf{Z})$ denote the real Hilbert space of square–summable functions on the integers. Let x_k $(k \ge 1)$ be a sequence in $\ell^2(\mathbf{Z})$ that converges coordinate–wise to zero, i.e., such that $\lim_{k\to\infty} x_k(n) = 0$ for all $n \in \mathbf{Z}$.

Must x_k converge in norm to 0 as $k \to \infty$? What about if $||x_k||$ is assumed to be bounded? Must x_k converge weakly to 0 as $k \to \infty$? What about if $||x_k||$ is assumed to be bounded? Justify your answers (by proof or counter-example.)

#7. Let X be a second countable (that is, having a countable basis of open sets) and normal topological space. Show that there is a countable family \mathcal{F} of countinuous functions from X into the interval [0, 1] that separates points and closed sets: i.e., such that if $x \in X$ and C is a closed subset of X with $x \notin C$, then there is $f \in \mathcal{F}$ such that f(x) = 0 and $f(C) \subseteq \{1\}$.

#8. Let $f \in L^1(0,\infty)$ and define

$$h(x) = \int_0^\infty (x+y)^{-1} f(y) \, dy$$

for x > 0. Show that h is differentiable at all x > 0 and show $h' \in L^1(r, \infty)$ for every r > 0. What about for r = 0? (Justify your answer.)

#9. Suppose X is a Banach space and Y is a normed linear space and $T: X \to Y$ is a linear map such that for every bounded linear functional $g \in Y^*$ we have $g \circ T$ is bounded. Show that T is bounded.

#10. Let X be a real Banach space and suppose C is a closed subset of X such that

- (i) $x_1 + x_2 \in C$ for all $x_1, x_2 \in C$,
- (ii) $\lambda x \in C$ for all $x \in C$ and $\lambda > 0$,
- (iii) for all $x \in X$ there exist $x_1, x_2 \in C$ such that $x = x_1 x_2$.

Prove that, for some M > 0, the unit ball of X is contained in the closure of

 $\{x_1 - x_2 \mid x_i \in C, \ \|x_i\| \le M, \ (i = 1, 2)\}.$

Deduce that, for some K > 0, every $x \in X$ can be written $x = x_1 - x_2$, with $x_i \in C$ and $||x_i|| \leq K ||x||$, (i = 1, 2). (In fact, any K > M will do, but you need not show this.)