Qualifying Examination in Real Variables, August 2010

(1) (a) Give an example of a sequence $\left(f_{n}\right)$ in $L_{1}[0,1]$ such that $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{L_{1}}=0$, but $\left(f_{n}\right)$ does not converge to 0 almost everywhere.
(b) Show that if a sequence $\left(f_{k}\right)$ in $L_{1}[0,1]$ satisfies $\left\|f_{k}\right\|_{L_{1}} \leq$ 2^{-k} for $k \geq 1$, then $f_{k} \rightarrow 0$ almost everywhere.
(2) Let E be a subset of $[0,1]$ with positive outer Lebesgue measure, i.e. $m^{*}(E)>0$. Show that for each $\alpha \in(0,1)$ there is an interval $I \subset[0,1]$ so that

$$
m^{*}(E \cap I) \geq \alpha \text { length }(I)
$$

(3) Let X be a Banach space and let $\left(x_{n}\right)$ be a sequence from X that converges weakly to 0 . Prove that the sequence $\left(\left\|x_{n}\right\|\right)$ is bounded.
(4) (a) Let $\left(f_{n}\right)$ be a bounded sequence in $C[0,1]$. Prove that $\left(f_{n}\right)$ converges weakly to $0 \Longleftrightarrow\left(f_{n}\right)$ converges pointwise to 0 .
(b) Assume that $\left(f_{n}\right) \subset C[0,1]$ converges in the weak topology. Show that f_{n} is norm convergent in $L_{1}[0,1]$.
[For part (b) you may use problem (3).]
(5) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function such that for some $C>0$

$$
m\{x:|f(x)| \geq \lambda\} \leq C \lambda^{-2}, \text { for all } \lambda>0
$$

Prove that there is some $C^{\prime}>0$ so that
$\int_{E}|f(x)| d x \leq C^{\prime} \sqrt{m(E)}$, for all measurable $E \subset \mathbb{R}$.
(6) Let $f(x)$ be a continuous function on $[0,1]$ with a continuous derivative $f^{\prime}(x)$. Given $\varepsilon>0$, prove that there is a polynomial $p(x)$ so that

$$
\|f(x)-p(x)\|_{\infty}+\left\|f^{\prime}(x)-p^{\prime}(x)\right\|_{\infty}<\varepsilon
$$

(7) Let X be a non-empty complete metric space and let

$$
\left\{f_{n}: X \rightarrow \mathbb{R}\right\}_{n=1}^{\infty}
$$

be a sequence of continuous functions with the following property: for each $x \in X$, there exists an integer N_{x} so that $\left\{f_{n}(x)\right\}_{n \geq N_{x}}$ is either a monotone increasing or decreasing sequence. Prove that there is a non-empty open subset $U \subseteq X$ and an integer N so that the sequence $\left\{f_{n}(x)\right\}_{n \geq N}$ is monotone for all $x \in U$.
(8) Assume that $1 \leq p<\infty$ and that a linear operator T : $L_{p}[0,1] \rightarrow L_{p}[0,1]$ is such that $\left(T f_{n}\right)$ converges almost everywhere to 0 if $\left(f_{n}\right)$ converges almost everywhere to 0 .

Show that T is a bounded operator on $L_{p}[0,1]$.
(9) (a) State the Hahn Banach Theorem for real vector spaces.
(b) Deduce from it the following corollary: Let X be a Banach space, $Y \subset X$ a closed subspace and $x \in X \backslash Y$. Show that there is an $x^{*} \in X^{*}$ so that $\left.x^{*}\right|_{Y} \equiv 0$ and $x^{*}(x)=1$.
(10) Let U be the closed unit ball in the Banach space $C[0,1]$ of continuous real valued functions on the unit interval. Prove that the extreme points of U are the constant functions ± 1. Prove that $C[0,1]$ is not a dual Banach space.

