Qualifying Examination in Real Variables, August 2010

- (1) (a) Give an example of a sequence (f_n) in $L_1[0, 1]$ such that $\lim_{n\to\infty} ||f_n||_{L_1} = 0$, but (f_n) does not converge to 0 almost everywhere.
 - (b) Show that if a sequence (f_k) in $L_1[0, 1]$ satisfies $||f_k||_{L_1} \le 2^{-k}$ for $k \ge 1$, then $f_k \to 0$ almost everywhere.
- (2) Let *E* be a subset of [0, 1] with positive outer Lebesgue measure, i.e. $m^*(E) > 0$. Show that for each $\alpha \in (0, 1)$ there is an interval $I \subset [0, 1]$ so that

$$m^*(E \cap I) \ge \alpha \operatorname{length}(I).$$

- (3) Let X be a Banach space and let (x_n) be a sequence from X that converges weakly to 0. Prove that the sequence $(||x_n||)$ is bounded.
- (4) (a) Let (f_n) be a bounded sequence in C[0, 1]. Prove that
 - (f_n) converges weakly to $0 \iff (f_n)$ converges pointwise to 0.
 - (b) Assume that $(f_n) \subset C[0, 1]$ converges in the weak topology. Show that f_n is norm convergent in $L_1[0, 1]$. [For part (b) you may use problem (3).]
- (5) Let $f : \mathbb{R} \to \mathbb{R}$ be a measurable function such that for some C > 0

$$m\{x: |f(x)| \ge \lambda\} \le C\lambda^{-2}$$
, for all $\lambda > 0$.

Prove that there is some C' > 0 so that

$$\int_{E} |f(x)| dx \le C' \sqrt{m(E)}, \text{ for all measurable } E \subset \mathbb{R}.$$

(6) Let f(x) be a continuous function on [0, 1] with a continuous derivative f'(x). Given $\varepsilon > 0$, prove that there is a polynomial p(x) so that

$$||f(x) - p(x)||_{\infty} + ||f'(x) - p'(x)||_{\infty} < \varepsilon.$$

(7) Let X be a non-empty complete metric space and let

$${f_n: X \to \mathbb{R}}_{n=1}^\infty$$

be a sequence of continuous functions with the following property: for each $x \in X$, there exists an integer N_x so that $\{f_n(x)\}_{n \geq N_x}$ is either a monotone increasing or decreasing sequence. Prove that there is a non-empty open subset $U \subseteq X$ and an integer N so that the sequence $\{f_n(x)\}_{n \geq N}$ is monotone for all $x \in U$.

- (8) Assume that $1 \leq p < \infty$ and that a linear operator $T : L_p[0,1] \to L_p[0,1]$ is such that (Tf_n) converges almost everywhere to 0 if (f_n) converges almost everywhere to 0. Show that T is a bounded operator on $L_p[0,1]$.
- (9) (a) State the Hahn Banach Theorem for real vector spaces.
 - (b) Deduce from it the following corollary: Let X be a Banach space, $Y \subset X$ a closed subspace and $x \in X \setminus Y$. Show that there is an $x^* \in X^*$ so that $x^*|_Y \equiv 0$ and $x^*(x) = 1$.
- (10) Let U be the closed unit ball in the Banach space C[0, 1] of continuous real valued functions on the unit interval. Prove that the extreme points of U are the constant functions ± 1 . Prove that C[0, 1] is not a dual Banach space.