Real Analysis Qualifying Exam
 August 2011

Each problem is worth ten points. Work each problem on a separate piece of paper.

1. Let (X, \mathcal{M}, μ) be a measure space.
(a) Give the definitions of convergence a.e. and convergence in measure for a sequence of measurable functions on X.
(b) Show that every sequence of measurable functions on X which converges in measure to 0 has a subsequence which converges a.e. to 0 .
2. Let X be a separable Banach space. Show that there exists an isometric linear map from X into ℓ^{∞}. Also, show that this is false in general if ℓ^{∞} is replaced by ℓ^{2}.
3. Let X be a locally compact metric space and let $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a sequence in X which has no convergent subsequence. Show that $\left\{n^{-1} \sum_{k=1}^{n} \delta_{x_{k}}\right\}_{n=1}^{\infty}$ converges to 0 in the weak ${ }^{*}$ topology on $C_{0}(X)^{*}$, where $\delta_{x_{k}}$ denotes the point mass at x_{k}.
4. Let \mathcal{P} be the set of all polynomials f on $[0,1]$ such that $f(0)=f^{\prime}(0)=0$. Determine, with proof, the values of p with $1 \leq p \leq \infty$ such that \mathcal{P} is dense in $L^{p}[0,1]$.
5. Let $1<p<\infty$, and let $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a sequence in $\ell^{p}(\mathbb{N})$ such that $\lim _{k \rightarrow \infty} x_{k}(n)=0$ for all $n \in \mathbb{N}$. Show that if there is an $M>0$ such that $\left\|x_{k}\right\| \leq M$ for all $k \in \mathbb{N}$ then $x_{k} \rightarrow 0$ weakly. Also, show that if there is no such M then $\left\{x_{k}\right\}_{k=1}^{\infty}$ can fail to converge weakly.
6. Let $f \in C_{0}(\mathbb{R})$ and for every $t \in \mathbb{R}$ define $f_{t} \in C_{0}(\mathbb{R})$ by $f_{t}(x)=f(x+t)$ for all $x \in \mathbb{R}$.
(a) Prove that $\left\{f_{t}: t \in[0,1]\right\}$ is compact in the norm topology.
(b) Prove that $\left\{f_{t}: t \in \mathbb{R}\right\}$ is relatively compact in the weak topology.
7. Let f be an arbitrary real valued function on $[0,1]$. Show that the set of points at which f is continuous is a Lebesgue measurable set.
8. Show that not every nonempty bounded closed subset of ℓ^{2} has a point of minimal norm, but that every nonempty bounded closed convex subset of ℓ^{2} has a point of minimal norm.
9. Show that there is a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of continuous functions on $[0,1]$ such that
(a) $\left|f_{n}(t)\right|=1$ for all n and all $t \in[0,1]$, and
(b) for all $g \in L^{1}[0,1]$ one has $\int_{0}^{1} f_{n}(t) g(t) d t \rightarrow 0$ as $n \rightarrow \infty$.
10. (a) Define what it means for a real valued function on $[0,1]$ to be absolutely continuous.
(b) Prove that if f and g are absolutely continuous strictly positive functions on $[0,1]$ then f / g is absolutely continuous on $[0,1]$.
