Real Analysis Qualifying Exam August 2011

Each problem is worth ten points. Work each problem on a separate piece of paper.

1. Let (X, \mathcal{M}, μ) be a measure space.

(a) Give the definitions of convergence a.e. and convergence in measure for a sequence of measurable functions on X.

(b) Show that every sequence of measurable functions on X which converges in measure to 0 has a subsequence which converges a.e. to 0.

- 2. Let X be a separable Banach space. Show that there exists an isometric linear map from X into ℓ^{∞} . Also, show that this is false in general if ℓ^{∞} is replaced by ℓ^2 .
- 3. Let X be a locally compact metric space and let $\{x_k\}_{k=1}^{\infty}$ be a sequence in X which has no convergent subsequence. Show that $\{n^{-1}\sum_{k=1}^{n} \delta_{x_k}\}_{n=1}^{\infty}$ converges to 0 in the weak* topology on $C_0(X)^*$, where δ_{x_k} denotes the point mass at x_k .
- 4. Let \mathcal{P} be the set of all polynomials f on [0,1] such that f(0) = f'(0) = 0. Determine, with proof, the values of p with $1 \le p \le \infty$ such that \mathcal{P} is dense in $L^p[0,1]$.
- 5. Let $1 , and let <math>\{x_k\}_{k=1}^{\infty}$ be a sequence in $\ell^p(\mathbb{N})$ such that $\lim_{k\to\infty} x_k(n) = 0$ for all $n \in \mathbb{N}$. Show that if there is an M > 0 such that $||x_k|| \leq M$ for all $k \in \mathbb{N}$ then $x_k \to 0$ weakly. Also, show that if there is no such M then $\{x_k\}_{k=1}^{\infty}$ can fail to converge weakly.
- 6. Let $f \in C_0(\mathbb{R})$ and for every $t \in \mathbb{R}$ define $f_t \in C_0(\mathbb{R})$ by $f_t(x) = f(x+t)$ for all $x \in \mathbb{R}$.
 - (a) Prove that $\{f_t : t \in [0, 1]\}$ is compact in the norm topology.
 - (b) Prove that $\{f_t : t \in \mathbb{R}\}$ is relatively compact in the weak topology.
- 7. Let f be an arbitrary real valued function on [0, 1]. Show that the set of points at which f is continuous is a Lebesgue measurable set.
- 8. Show that not every nonempty bounded closed subset of ℓ^2 has a point of minimal norm, but that every nonempty bounded closed convex subset of ℓ^2 has a point of minimal norm.
- 9. Show that there is a sequence $\{f_n\}_{n=1}^{\infty}$ of continuous functions on [0,1] such that
 - (a) $|f_n(t)| = 1$ for all n and all $t \in [0, 1]$, and
 - (b) for all $g \in L^1[0,1]$ one has $\int_0^1 f_n(t)g(t)dt \to 0$ as $n \to \infty$.
- 10. (a) Define what it means for a real valued function on [0, 1] to be absolutely continuous.

(b) Prove that if f and g are absolutely continuous strictly positive functions on [0, 1] then f/g is absolutely continuous on [0, 1].