Real Analysis Qualifying Exam; August, 2013.

Work as many of these ten problems as you can in four hours. Start each problem on a new sheet of paper.
\#1. Let $1 \leq p \leq \infty$ and let $f \in L^{p}(\mathbf{R})$. For $t \in \mathbf{R}$, let $f_{t}(x)=f(x-t)$ and consider the mapping $G: \mathbf{R} \rightarrow L^{p}(\mathbf{R})$ given by $G(t)=f_{t}$. The space $L^{p}(\mathbf{R})$ is equipped with the usual norm topology.
(a) Show that G is continuous if $1 \leq p<\infty$.
(b) Find an f for which the mapping G is not continuous when $p=\infty$ (and justify your answer).
(c) Let $1 \leq p, q \leq \infty$ be conjugate exponents (i.e., satisfying $\frac{1}{p}+\frac{1}{q}=1$). Let $f \in L^{p}(\mathbf{R})$ and $g \in L^{q}(\mathbf{R})$ and show that their convolution $h=f * g$ is continuous. Recall

$$
h(t)=\int_{-\infty}^{\infty} f(x) g(t-x) d x
$$

\#2. (a) For $f \in C_{\mathbf{R}}([0,1])$, show that $f \geq 0$ if and only if $\|\lambda-f\|_{u} \leq \lambda$ for all $\lambda \geq\|f\|_{u}$, where $\|\cdot\|_{u}$ denotes the uniform (supremum) norm.
(b) Suppose $E \subseteq C_{\mathbf{R}}([0,1])$ is a closed subspace containing the constant function 1. For $\phi \in E^{*}$, we define $\phi \geq 0$ to mean $\phi(f) \geq 0$ whenever $f \in E$ and $f \geq 0$. Show $\phi \geq 0$ if and only if $\|\phi\|=\phi(1)$.
(c) If $\phi \in E^{*}$ and $\phi \geq 0$, show that there is a bounded linear functional ψ on $C_{\mathbf{R}}([0,1])$ so that $\psi \geq 0$ and the restriction of ψ to E is ϕ.
\#3. (a) Let μ and λ be mutually singular complex measures defined on the same measurable space (X, \mathcal{M}) and let $\nu=\mu+\lambda$. Show $|\nu|=|\mu|+|\lambda|$.
(b) Construct a nonzero, atomless Borel measure on $[0,1]$ that is mutually singular with respect to Lebesgue measure.
\#4. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of continuous functions on $[0,1]$ and suppose that for all $x \in[0,1], f_{n}(x)$ is eventually nonnegative. Show that there is an open interval $I \subseteq[0,1]$ such that for all n large enough, f_{n} is nonnegative everywhere on I.
\#5. Let μ be a nonatomic signed measure on a measurable space (X, Ω), with $\mu(X)=1$. Show that there is a measurable subset $E \subset X$ with $\mu(E)=1 / 2$.
\#6. Compute

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{n \sin (x / n)}{x\left(1+x^{2}\right)} d x
$$

and justify your computation.
\#7. Prove or disprove: for every real-valued continuous function f on $[0,1]$ such that $f(0)=0$ and every $\epsilon>0$, there is a real polynomial p having only odd powers of x, i.e., p is of the form

$$
p(x)=a_{1} x+a_{3} x^{3}+a_{5} x^{5}+\cdots+a_{2 n+1} x^{2 n+1}
$$

such that $\sup _{x \in[0,1]}|f(x)-p(x)|<\epsilon$.
\#8. Let $f \in L_{\text {loc }}^{1}(\mathbf{R})$. (a) What (by definition) are the Hardy-Littlewood maximal function $H f$ and the Lebesgue set L_{f} of f ?
(b) State the Hardy-Littlewood Maximal Theorem.
(c) In each case, either construct concretely an example of f with the required property, or explain why no such example exists (you may use theorems from Folland about the Lebesgue set, if you state them).
(i) $L_{f}=\mathbf{R}$
(ii) the complement of L_{f} is uncountable
(iii) $L_{f} \subseteq(-\infty, 0] \cup[1, \infty)$.
\#9. Let X be a separable Banach space, let $\left\{x_{n} \mid n \geq 1\right\}$ be a countable, dense subset of the unit ball of X and let B be the closed unit ball in the dual Banach space X^{*} of X. For $\phi, \psi \in B$, let

$$
d(\phi, \psi)=\sum_{n=1}^{\infty} 2^{-n}\left|\phi\left(x_{n}\right)-\psi\left(x_{n}\right)\right| .
$$

Show that d is a metric on B whose topology agrees with the weak*-topology of X^{*} restricted to B.
\#10. Let $T: X \rightarrow Y$ be a linear map between Banach spaces that is surjective and satisfies $\|T x\| \geq \epsilon\|x\|$ for some $\epsilon>0$ and all $x \in X$. Show that T is bounded.

