Qualifying Examination in Real Variables, August 2014

General Instructions:

- (1) Use a separate sheet of paper for each problem.
- (2) Unless stated otherwise, you may use results from Folland's book, but you need to state them carefully (it is not necessary to remember their names).

Problems:

- (1) For $n \in \mathbb{N}$, let $f_n : [0,1] \to \mathbb{R}$ be continuous, and assume that for every $x \in [0,1]$ the sequence $(f_n(x))$ is decreasing. Suppose that f_n converges pointwise to a continuous function f. Show that this convergence is uniform.
- (2) Let $f \in L^1(0,\infty)$. For x > 0, define

$$g(x) = \int_0^\infty f(t)e^{-tx}dt.$$

Prove that g(x) is differentiable for x > 0 with derivative

$$g'(x) = \int_0^\infty -tf(t)e^{-tx}dt.$$

(3) Let $f : \mathbb{R} \to \mathbb{R}$ be a Lebesgue integrable function such that

$$\int_{a}^{b} f(x)dx = 0 \text{ for every } a < b.$$

Show that f(x) = 0 for almost every $x \in \mathbb{R}$.

- (4) Let f be Lebesgue measurable on [0, 1] with f(x) > 0 a.e. Suppose (E_k) is a sequence of measurable sets in [0, 1] with the property that $\int_{E_k} f(x) dx \to 0$ as $k \to \infty$. Prove that $m(E_k) \to 0$ as $k \to \infty$.
- (5) Let (f_n) be a sequence of continuous functions on [0, 1] such that for each $x \in [0, 1]$ there is an $N = N_x$ so that

$$f_n(x) \ge 0$$
 for all $n \ge N_x$.

Show that there is an open nonempty set $U \subset [0, 1]$ and an $N \in \mathbb{N}$, so that $f_n(x) \ge 0$ for all $n \ge N$ and all $x \in U$.

- (6) a) Define the w^* -topology on the dual X^* of a Banach space X.
 - b) Let X be an infinite dimensional Banach space. What is the w^* -closure of

$$S_{X^*} = \left\{ x^* \in X^* : \|x^*\| = 1 \right\}?$$

(As usual, prove your answer.)

- (7) a) State the Riesz Representation Theorem for the dual $L_p^*(\mu)$ of $L_p(\mu), 1 \le p < \infty$.
 - b) Let μ be a finite measure on the measurable space (Ω, Σ) . Prove the following part of the proof of the above Theorem: If $F \in L_p^*(\mu)$, then there exists an $h \in L_1(\mu)$ so that

$$F(\chi_A) = \int_A h \, d\mu$$
 for all $A \in \Sigma$.

(8) Assume that (x_n) is a weakly converging sequence in a Hilbert space H. Show that there is a subsequence (y_n) of (x_n) so that

$$\frac{1}{n}\sum_{j=1}^n y_j$$

converges in norm.

- (9) Show that a linear functional ϕ on a Banach space X is continuous if and only if $\{x \in X : \phi(2x) = 3\}$ is norm closed.
- (10) Let $C^{1}[0,1]$ be the space of functions $f \in C[0,1]$ such that f' exists and is continuous in [0,1]. The space $C^{1}[0,1]$ is given the supremum norm. Define $T: C^{1}[0,1] \to C[0,1]$ by Tf = f' for $f \in C^{1}[0,1]$. Show that T has a closed graph and that T is not bounded. Decide if $C^{1}[0,1]$ (together with the supremum norm) is a Banach space or not. (Explain your answer).