Qualifying Examination in Real Variables, August 2015

General Instructions:

(1) For each problem, use a new sheet.
(2) All vector spaces are over \mathbb{R} and all functions are \mathbb{R}-valued.
(3) Unless otherwise stated, you may use results from Folland's book, but you need to state them carefully (it is not necessary to remember their names).

Problems:

(1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Borel measurable function. For each $t \in \mathbb{R}$ define

$$
f_{t}(x)=f(t+x), \quad x \in \mathbb{R}
$$

Prove that $f_{t}(x)$ is a Borel measurable function (in x) for each fixed $t \in \mathbb{R}$.
(2) Justify the statement that

$$
\int_{0}^{1} \int_{0}^{1} \frac{(x-y) \sin (x y)}{x^{2}+y^{2}} d x d y=\int_{0}^{1} \int_{0}^{1} \frac{(x-y) \sin (x y)}{x^{2}+y^{2}} d y d x
$$

(3) Assume that $\left(f_{n}\right)$ is a sequence in $C[0,1]$.
a) Show that $\left(f_{n}\right)$ converges weakly to 0 if and only if $\left(f_{n}\right)$ is bounded in $C[0,1]$ and $\lim _{n \rightarrow \infty} f_{n}(t)=0$ for all $t \in[0,1]$.
b) Show that if $\left(f_{n}\right)$ converges weakly in $C[0,1]$, then it converges in norm in $L_{p}[0,1]$ for all $1 \leq p<\infty$.
(4) Let A be a Lebesgue null set in \mathbb{R}. Prove that

$$
B:=\left\{e^{x}: x \in A\right\}
$$

is also a null set.
(5) a) Define absolute continuity of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and of a function $f:[a, b] \rightarrow \mathbb{R}$.
b) Show that if f and g are absolutely continuous on $[a, b]$, $a, b \in \mathbb{R}, a<b$, then $f \cdot g$ is absolutely continuous on $[a, b]$.
c) Give an example to show that (b) is false if $[a, b]$ is replaced by \mathbb{R}.
(6) Let X and Y be Banach spaces and $T: X \rightarrow Y$ be a one-toone, bounded and linear operator for which the range $T(X)$ is closed in Y. Show that for each continuous linear functional ϕ on X there is a continuous linear functional ψ on Y, so that $\phi=\psi \circ T$.
(7) State the Open Mapping Theorem and the Closed Graph Theorem for Banach spaces. Derive the Open Mapping Theorem from the Closed Graph Theorem.
(8) Let Y be a closed subspace of a Banach space X, with norm $\|\cdot\|$. Let $\|\cdot\|$ be a norm on Y which is equivalent to $\|\cdot\|$, meaning that there is a $C \geq 1$ so that

$$
\frac{1}{C}\|y\| \leq\|y\| \leq C\|y\| \text { for all } y \in Y
$$

Let S be the set of all linear functionals $\phi: X \rightarrow \mathbb{R}$, so that

$$
\begin{align*}
& |\phi(y)| \leq\|y\| \text { for all } y \in Y, \text { and } \tag{a}\\
& |\phi(x)| \leq C\|x\| \text { for all } x \in X \tag{b}
\end{align*}
$$

Prove the following statements
i) $\|\|x\|\|:=\sup _{\phi \in S}|\phi(x)|, x \in X$, defines a norm on X.
ii) $\|\|y\|\|=\|y\|$ for $y \in Y$.
iii) The norms $\|\|\cdot\|\|$ and $\|\cdot\|$ are equivalent on X.
(9) Let f be increasing on $[0,1]$ and let

$$
g(x)=\limsup _{h \rightarrow 0} \frac{f(x+h)-f(x-h)}{2 h}, \quad \text { for } 0<x<1 .
$$

Prove that if $A=\{x \in(0,1): g(x)>1\}$ then

$$
f(1)-f(0) \geq m^{*}(A) .
$$

(10) a) State a version of the Stone-Weierstrass Theorem.
b) Let A be a uniformly dense subspace of $C[0,1]$ and let
$B=\left\{F(x): F(x)=\int_{0}^{x} f(t) d t, \quad 0 \leq x \leq 1, f \in A\right\}$.
Prove that B is uniformly dense in

$$
C_{0}[0,1]:=\{g \in C[0,1]: g(0)=0\} .
$$

c) Prove that the span of $\{\sin (n x): n \in \mathbb{N}\}$ is dense in $C_{0}[0,1]$.

