1. Let \mathcal{A} be the set of all real valued functions on $[0,1]$ for which $f(0)=0$ and $\mid f(t)-$ $\left.f(s)\right|^{1 / 2} \leq t-s$ for all $0 \leq s<t \leq 1$.
a. Prove that \mathcal{A} is a compact subset of $C[0,1]$.
b. Prove that \mathcal{A} is a compact subset of $L_{1}[0,1]$

Don't forget to check that \mathcal{A} is closed in the given Banach spaces.
2. (a) Let $f(x)$ be a real valued function on the real line that is differentiable almost everywhere. Prove that $f^{\prime}(x)$ is a Lebesgue measurable function.
(b) Prove that if f is a continuous real valued function on the real line, then the set of points at which f is differentiable is measurable.
3. (a) Let f be a real valued function on the unit interval $[0,1]$. Prove that the set of points at which f is discontinuous is a countable union of closed subsets.
(b) Prove that there does not exist a real valued function on $[0,1]$ that is continuous at all rational points but discontinuous at all irrational points.
4. Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space and let $\left(f_{n}\right)$ be a sequence of measurable functions on X that converges pointwise to zero. Prove that $\left(f_{n}\right)$ converges in measure to zero. Show that the converse is false for $[0,1]$ with Lebesgue measure.
5. If f is Lebesgue integrable on the real line, prove that $\lim _{h \rightarrow 0} \int_{\mathbb{R}}|f(x+h)-f(x)| d x=0$.
6. Prove or disprove that there exists a sequence $\left(P_{n}\right)$ of polynomials such that $\left(P_{n}(t)\right)$ converges to one for every $t \in[0,1]$ but $\int_{0}^{1} P_{n}(t) d t$ converges to two as $n \rightarrow \infty$.
7. Let $\left(f_{n}\right)$ be a uniformly bounded sequence of continuous functions on $[0,1]$ that converges pointwise to zero. Prove that 0 is in the norm closure in $C[0,1]$ of the convex hull of $\left(f_{n}\right)$ (the norm is of course the sup norm on $C[0,1]$).
8. Assume that X is a reflexive Banach space and ϕ is a continuous linear functional on X. Prove that ϕ achieves its norm; that is, prove that there is a norm one vector x in X such that $\phi(x)=\|x\|$. Show by example that there is a continuous linear functional on the Banach space ℓ_{1} that does not achieve its norm.
9. Suppose that X is a non separable Banach space. Prove that there is an uncountable subset A of the unit ball of X such that for all $x \neq y$ in $X,\|x-y\|>.9$.
10. If A is a Borel subset of the line, then $E=\{(x, y): x-y \in A\}$ is a Borel subset of the plane. If the Lebesgue measure of A is 0 , then the Lebesgue measure of E is 0 .

