Real Analysis Qualifying Exam, August, 2017

- (1) Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and let $\{f_n\}$ be a sequence of measurable functions on X. Prove, directly from the definition of convergence almost everywhere, that if $\sum_n \mu[|f_n| > 1/n] < \infty$, then the sequence $\{f_n\}$ converges almost everywhere to zero. Deduce that every sequence of measurable functions that converges in measure to zero has a subsequence that converges almost everywhere to zero.
- (2) Show that there is a sequence of nonnegative functions $\{f_n\}$ in $L^1(\mathbb{R})$ such that $||f_n||_{L^1(\mathbb{R})} \to 0$, but for any $x \in \mathbb{R}$, $\limsup_n f_n(x) = \infty$.
- (3) Construct a sequence of nonnegative Lebesgue measurable functions $\{f_n\}$ on [0,1] such that
 - (a) $f_n \to 0$ almost everywhere, and
 - (b) for any interval $[a, b] \subseteq [0, 1]$,

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = (b - a).$$

- (4) In this problem the measure is Lebesgue measure on [0, 1]. The norm on $L^{\infty}[0,1]$ is the essential supremum norm, which for a continuous function is the same as the supremum norm. (a) Prove or disprove that $L^{\infty}[0, 1]$ is separable in the norm topology. (b) Recall that $L^{\infty}[0,1] = (L^{1}[0,1])^{*}$, What is the weak^{*} closure in $L^{\infty}[0,1]$ of the unit ball of C[0,1]? Prove your assertion.
- (5) Prove that if $a_1, a_2, ..., a_N$ are complex numbers, then (a) $\int_0^1 |\sum_{k=1}^N a_k \exp(2\pi i k t)|^p dt \le \sum_{k=1}^N |a_k|^p$, if $1 \le p \le 2$, and (b) $\int_0^1 |\sum_{k=1}^N a_k \exp(2\pi i k t)|^p dt \ge \sum_{k=1}^N |a_k|^p$, if $2 \le p < \infty$.
- (6) Prove that if X is an infinite dimensional Banach space and X^* is separable in the norm topology, then there is a sequence $\{x_n\}$ of norm one vectors in X such that $\{x_n\}$ converges weakly to zero.

- (7) Prove or disprove each of the following statements.
 - (a) "If $\{f_n\}$ is a sequence in C[0, 1] that converges weakly, then also $\{f_n^2\}$ converges weakly."

(b) "If $\{f_n\}$ is a sequence in $L^2[0, 1]$ that converges weakly, then also $\{f_n^2\}$ converges weakly." (Lebesgue measure on [0, 1].)

- (8) Let $\{f_n\}$ be a sequence of continuous functions on \mathbb{R} that converges pointwise to a real valued function f. Prove that for each a < b, the function f is continuous at some point of [a, b]. (Hint: Let $E_{n,m,k} = [|f_n - f_m| \le 1/k].$)
- (9) Let X and Y be compact Hausdorff spaces and let S be the set of all real functions on $X \times Y$ of the form h(x, y) = f(x)g(y) with f in C(X) and g in C(Y). Prove or disprove that the linear span of S is dense in $C(X \times Y)$.
- (10) Let X be a Hilbert space and assume that $\{x_n\}$ is a sequence in X that converges weakly to zero. Prove that there is a subsequence $\{y_k\}$ of $\{x_n\}$ such that the sequence $\|N^{-1}\sum_{k=1}^N y_k\|$ converges to zero. **Caution:** The same statement is NOT true in all Banach spaces; not even in all reflexive Banach spaces.
- (11) Let $F \subset C([0, 1])$ be a family of continuous functions such that 1. the derivative f'(t) exists for all $t \in (0, 1)$ and $f \in F$. 2. $\sup_{f \in F} |f(0)| < \infty$ and $\sup_{f \in F} \sup_{t \in (0,1)} |f'(t)| < \infty$. Prove that F is precompact in the Banach space C([0, 1]) equipped with the norm $||f|| = \sup_{t \in [0,1]} |f(t)|$.
- (12) Let $\{x_n\}$ be a weakly Cauchy sequence in a normed linear space X. Prove that
 - (a) x_n is norm bounded in X.
 - (b) There exists x^{**} in X^{**} such that x_n converges weak* to x^{**} , and $||x^{**}|| \leq \liminf_n ||x_n||$.

2