(1) Let \((\Omega, \mathcal{A}, \mu)\) be a measure space and let \(\{f_n\}\) be a sequence of measurable functions on \(X\). Prove, directly from the definition of convergence almost everywhere, that if \(\sum_n \mu(\{|f_n| > 1/n\}) < \infty\), then the sequence \(\{f_n\}\) converges almost everywhere to zero. Deduce that every sequence of measurable functions that converges in measure to zero has a subsequence that converges almost everywhere to zero.

(2) Show that there is a sequence of nonnegative functions \(\{f_n\}\) in \(L^1(\mathbb{R})\) such that \(\|f_n\|_{L^1(\mathbb{R})} \to 0\), but for any \(x \in \mathbb{R}\), \(\limsup_n f_n(x) = \infty\).

(3) Construct a sequence of nonnegative Lebesgue measurable functions \(\{f_n\}\) on \([0, 1]\) such that
(a) \(f_n \to 0\) almost everywhere, and
(b) for any interval \([a, b] \subseteq [0, 1]\),
\[
\lim_{n \to \infty} \int_a^b f_n(x) dx = (b - a).
\]

(4) In this problem the measure is Lebesgue measure on \([0, 1]\). The norm on \(L^\infty[0, 1]\) is the essential supremum norm, which for a continuous function is the same as the supremum norm.
(a) Prove or disprove that \(L^\infty[0, 1]\) is separable in the norm topology.
(b) Recall that \(L^\infty[0, 1] = (L^1[0, 1])^*\). What is the weak* closure in \(L^\infty[0, 1]\) of the unit ball of \(C[0, 1]\)? Prove your assertion.

(5) Prove that if \(a_1, a_2, \ldots, a_N\) are complex numbers, then
(a) \(\int_0^1 |\sum_{k=1}^N a_k \exp(2\pi i k t)|^p dt \leq \sum_{k=1}^N |a_k|^p\), if \(1 \leq p \leq 2\), and
(b) \(\int_0^1 |\sum_{k=1}^N a_k \exp(2\pi i k t)|^p dt \geq \sum_{k=1}^N |a_k|^p\), if \(2 \leq p < \infty\).

(6) Prove that if \(X\) is an infinite dimensional Banach space and \(X^*\) is separable in the norm topology, then there is a sequence \(\{x_n\}\) of norm one vectors in \(X\) such that \(\{x_n\}\) converges weakly to zero.
(7) Prove or disprove each of the following statements.
 (a) “If \(\{ f_n \} \) is a sequence in \(C[0, 1] \) that converges weakly, then also \(\{ f_n^2 \} \) converges weakly.”
 (b) “If \(\{ f_n \} \) is a sequence in \(L^2[0, 1] \) that converges weakly, then also \(\{ f_n^2 \} \) converges weakly.” (Lebesgue measure on \([0, 1]\).)

(8) Let \(\{ f_n \} \) be a sequence of continuous functions on \(\mathbb{R} \) that converges pointwise to a real valued function \(f \). Prove that for each \(a < b \), the function \(f \) is continuous at some point of \([a, b]\). (Hint: Let \(E_{n, m, k} = \{ f_n - f_m \mid |k| \leq 1/k \}. \))

(9) Let \(X \) and \(Y \) be compact Hausdorff spaces and let \(S \) be the set of all real functions on \(X \times Y \) of the form \(h(x, y) = f(x)g(y) \) with \(f \) in \(C(X) \) and \(g \) in \(C(Y) \). Prove or disprove that the linear span of \(S \) is dense in \(C(X \times Y) \).

(10) Let \(X \) be a Hilbert space and assume that \(\{ x_n \} \) is a sequence in \(X \) that converges weakly to zero. Prove that there is a subsequence \(\{ y_k \} \) of \(\{ x_n \} \) such that the sequence \(\| N^{-1} \sum_{k=1}^{N} y_k \| \) converges to zero. **Caution:** The same statement is NOT true in all Banach spaces; not even in all reflexive Banach spaces.

(11) Let \(F \subset C([0, 1]) \) be a family of continuous functions such that
 1. the derivative \(f'(t) \) exists for all \(t \in (0, 1) \) and \(f \in F \).
 2. \(\sup_{f \in F} |f(0)| < \infty \) and \(\sup_{f \in F} \sup_{t \in (0, 1)} |f'(t)| < \infty \).
 Prove that \(F \) is precompact in the Banach space \(C([0, 1]) \) equipped with the norm \(\| f \| = \sup_{t \in [0, 1]} |f(t)| \).

(12) Let \(\{ x_n \} \) be a weakly Cauchy sequence in a normed linear space \(X \). Prove that
 (a) \(x_n \) is norm bounded in \(X \).
 (b) There exists \(x^* \) in \(X^{**} \) such that \(x_n \) converges weak* to \(x^* \), and \(\| x^* \| \leq \liminf_n \| x_n \| \).