Real Analysis Qualifying Exam

Texas A&M Mathematics, August 2018

Solve any 10 of the following 12 problems. Start the solution of each problem you attempt on a fresh sheet of paper. Good luck!

- 1. Let μ and ν be positive measures on the same measureable space with ν finite and absolutely continuous with respect to μ . Show that for every $\epsilon > 0$ there exists $\delta > 0$ such that $\mu(E) < \delta$ implies $\nu(E) < \epsilon$.
- 2. Let μ be a positive measure. Suppose that $(f_n)_{n=1}^{\infty}$ is a Cauchy sequence in $L^1(\mu)$. Show that for all $\epsilon > 0$ there exists $\delta > 0$ such that $\mu(E) < \delta$ implies

$$\forall n \geq 1 \quad \left| \int_E f_n \, d\mu \right| < \epsilon.$$

You may use without proof the result of Problem #1.

3. Let $f : [0,1] \to [0,\infty)$ be Lebesgue measurable. For $n \in \mathbb{N}$ define

$$g_n = \frac{f^n}{1+f^n}.$$

- (a) Explain why $\int_0^1 g_n(t) dt$ exists and is finite for all *n*.
- (b) Prove that $\lim_n \int_0^1 g_n(t) dt$ exists and find an expression for it. Make sure to state which major theorems you are using in your proof.
- 4. Consider C([0,1]) endowed with its usual uniform norm. Prove or disprove that there is a bounded linear functional φ on C([0,1]) such that for all polynomials p, we have $\varphi(p) = p'(0)$, where p' is the derivative of p.
- 5. (a) Define the *product topology* on the Cartesian product $\prod_{\alpha \in A} X_{\alpha}$ of a family of topological spaces $(X_{\alpha})_{\alpha \in A}$.
 - (b) State Tychonoff's compactness theorem.
 - (c) State and prove the Banach-Alaoglu theorem. (Hint: Use Tychonoff's theorem).
- 6. Let (X, d) be a compact metric space.
 - (a) Show that X has a countable, dense set $\{x_n \mid n \in \mathbb{N}\}$.
 - (b) Let $f_n : X \to [0, \infty)$ be $f_n(x) = d(x, x_n)$. Show that if $x, y \in X$ and $f_n(x) = f_n(y)$ for all $n \in \mathbb{N}$, then x = y.

- 7. Let K > 0 and let Lip_K be the set of functions $f : \mathbb{R} \to \mathbb{R}$ satisfying $|f(x) f(y)| \le K|x y|$.
 - (a) Prove that

$$d(f_1, f_2) = \sum_{j=0}^{\infty} 2^{-j} \sup_{x \in [-j,j]} |f_1(x) - f_2(x)|$$

defines a metric on Lip_K .

- (b) Prove that (Lip_K, d) is a complete metric space.
- 8. Let *X*, *Y* be topological spaces. A map $f : X \to Y$ is said to be *proper* if for every compact subset $K \subseteq Y$, the inverse image $f^{-1}(K)$ is compact.
 - (a) Suppose *X* is a compact space and *Y* is Hausdorff. Prove that every continuous map $f : X \to Y$ is proper.
 - (b) Give an example of a continuous map which is not proper.
 - (c) Suppose $f : \mathbb{R}^m \to \mathbb{R}^n$ is a proper continuous map. Prove that f is a *closed* map, i.e. f(C) is closed in \mathbb{R}^n whenever C is a closed subset of \mathbb{R}^m .
- 9. Consider the interval $[-\pi, \pi]$ equipped with Lebesgue measure μ . For $n \in \mathbb{Z}$, consider the functions $f_n \in C([-\pi, \pi])$ given by $f_n(t) = e^{int}$.
 - (a) Prove that $\operatorname{span}_{\mathbb{C}} \{ f_n : n \in \mathbb{Z} \}$ is dense in the space

$$\mathcal{A} := \{ f \in C([-\pi, \pi]) \mid f(-\pi) = f(\pi) \}$$

with respect to the uniform norm.

- (b) Show that $\{\frac{f_n}{\sqrt{2\pi}} \mid n \in \mathbb{Z}\}$ is an orthonormal basis for the Hilbert space $L^2([-\pi,\pi],\mu)$.
- (c) Is the following statement true or false?:

" $\forall f \in \mathcal{A}, f = \lim_{N \to \infty} \frac{1}{2\pi} \sum_{n=-N}^{N} \langle f, f_n \rangle f_n$ with respect to the uniform norm."

Give a brief explanation why or why not.

- 10. Let $(X, \|\cdot\|)$ be a normed linear space and let $(X^*, \|\cdot\|_{X^*})$ denote its dual Banach space of bounded linear functionals. Recall that $\|\varphi\|_{X^*} = \sup_{\|x\|=1} |\varphi(x)|$ for $\varphi \in X^*$.
 - (a) Prove that for each $x \in X$ there exists $\varphi \in X^*$ with $\|\varphi\|_{X^*} = 1$ and $\|x\| = \varphi(x)$.
 - (b) Prove that the linear map $\iota : X \to X^{**}$ given by

$$\iota(x)(\varphi) = \varphi(x); \qquad (x \in X, \varphi \in X^*).$$

is an isometry.

(c) A Banach space X is called *reflexive* if $\iota(X) = X^{**}$. Prove that the Banach space

$$\ell^1 = \{f : \mathbb{N} \to \mathbb{C} \mid \|f\|_1 = \sum_k |f(k)| < \infty\}$$

is not reflexive.

(Hint: Consider a weak-* cluster point of the sequence $(\iota(f_n))_{n \in \mathbb{N}} \subset (\ell^1)^{**}$, where $f_n \in \ell^1$ is the unit vector

$$f_n(k) = \begin{cases} \frac{1}{n}, & k \le n\\ 0, & k > n \end{cases}$$

11. Let $(g_n)_{n \in \mathbb{N}} \subseteq C([0,1])$ be a sequence of non-negative continuous functions. Assume that for each k = 0, 1, 2, ..., the limit

$$\lim_{n\to\infty}\int_0^1 x^k g_n(x)dx \qquad \text{exists.}$$

Prove that there exists a unique finite positive Radon measure μ on [0, 1] such that

$$\int_{0}^{1} f(x)d\mu(x) = \lim_{n \to \infty} \int_{0}^{1} f(x)g_{n}(x)dx \quad \text{for all } f \in C([0,1]).$$

- 12. Let *X* be a locally compact Hausdorff space equipped with a Radon probability measure μ . Let $E \subseteq L^2(X, \mu)$ be a closed linear subspace and assume that *E* is contained in $C_0(X)$. The goal of this problem is to prove that dim $E < \infty$ by justifying the following steps:
 - (a) There exists a constant $1 \le K < \infty$ such that

$$||f||_2 \le ||f||_u \le K ||f||_2$$
 for all $f \in E$,

where $\|\cdot\|_u$ denotes the uniform norm. (Hint: Use the closed graph theorem for one of the inequalities.)

(b) For each $x \in X$, there exists a unique $g_x \in E$ such that $||g_x||_2 \leq K$ and

$$f(x) = \langle f, g_x \rangle$$
 for all $f \in E$.

(c) Let $(f_i)_{i \in I}$ be any orthonormal basis for *E*. Then

$$\sum_{i \in I} |f_i(x)|^2 = ||g_x||_2^2 \le K^2 \quad \text{for all } x \in X.$$

(d) dim $E = |I| \le K^2$.