Real Analysis Qualifying Exam

Texas A\&M Mathematics, August 2018

Solve any 10 of the following 12 problems. Start the solution of each problem you attempt on a fresh sheet of paper. Good luck!

1. Let μ and v be positive measures on the same measureable space with v finite and absolutely continuous with respect to μ. Show that for every $\epsilon>0$ there exists $\delta>0$ such that $\mu(E)<\delta$ implies $v(E)<\epsilon$.
2. Let μ be a positive measure. Suppose that $\left(f_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence in $L^{1}(\mu)$. Show that for all $\epsilon>0$ there exists $\delta>0$ such that $\mu(E)<\delta$ implies

$$
\forall n \geq 1 \quad\left|\int_{E} f_{n} d \mu\right|<\epsilon
$$

You may use without proof the result of Problem \#1.
3. Let $f:[0,1] \rightarrow[0, \infty)$ be Lebesgue measurable. For $n \in \mathbb{N}$ define

$$
g_{n}=\frac{f^{n}}{1+f^{n}} .
$$

(a) Explain why $\int_{0}^{1} g_{n}(t) d t$ exists and is finite for all n.
(b) Prove that $\lim _{n} \int_{0}^{1} g_{n}(t) d t$ exists and find an expression for it. Make sure to state which major theorems you are using in your proof.
4. Consider $C([0,1])$ endowed with its usual uniform norm. Prove or disprove that there is a bounded linear functional φ on $C([0,1])$ such that for all polynomials p, we have $\varphi(p)=p^{\prime}(0)$, where p^{\prime} is the derivative of p.
5. (a) Define the product topology on the Cartesian product $\prod_{\alpha \in A} X_{\alpha}$ of a family of topological spaces $\left(X_{\alpha}\right)_{\alpha \in A}$.
(b) State Tychonoff's compactness theorem.
(c) State and prove the Banach-Alaoglu theorem. (Hint: Use Tychonoff's theorem).
6. Let (X, d) be a compact metric space.
(a) Show that X has a countable, dense set $\left\{x_{n} \mid n \in \mathbb{N}\right\}$.
(b) Let $f_{n}: X \rightarrow[0, \infty)$ be $f_{n}(x)=d\left(x, x_{n}\right)$. Show that if $x, y \in X$ and $f_{n}(x)=$ $f_{n}(y)$ for all $n \in \mathbb{N}$, then $x=y$.
7. Let $K>0$ and let Lip_{K} be the set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $|f(x)-f(y)| \leq$ $K|x-y|$.
(a) Prove that

$$
d\left(f_{1}, f_{2}\right)=\sum_{j=0}^{\infty} 2^{-j} \sup _{x \in[-j, j]}\left|f_{1}(x)-f_{2}(x)\right|
$$

defines a metric on Lip_{K}.
(b) Prove that $\left(\operatorname{Lip}_{K}, d\right)$ is a complete metric space.
8. Let X, Y be topological spaces. A map $f: X \rightarrow Y$ is said to be proper if for every compact subset $K \subseteq Y$, the inverse image $f^{-1}(K)$ is compact.
(a) Suppose X is a compact space and Y is Hausdorff. Prove that every continuous map $f: X \rightarrow Y$ is proper.
(b) Give an example of a continuous map which is not proper.
(c) Suppose $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a proper continuous map. Prove that f is a closed map, i.e. $f(C)$ is closed in \mathbb{R}^{n} whenever C is a closed subset of \mathbb{R}^{m}.
9. Consider the interval $[-\pi, \pi]$ equipped with Lebesgue measure μ. For $n \in \mathbb{Z}$, consider the functions $f_{n} \in C([-\pi, \pi])$ given by $f_{n}(t)=e^{i n t}$.
(a) Prove that $\operatorname{span}_{C}\left\{f_{n}: n \in \mathbb{Z}\right\}$ is dense in the space

$$
\mathcal{A}:=\{f \in C([-\pi, \pi]) \mid f(-\pi)=f(\pi)\}
$$

with respect to the uniform norm.
(b) Show that $\left\{\left.\frac{f_{n}}{\sqrt{2 \pi}} \right\rvert\, n \in \mathbb{Z}\right\}$ is an orthonormal basis for the Hilbert space $L^{2}([-\pi, \pi], \mu)$.
(c) Is the following statement true or false?:
$" \forall f \in \mathcal{A}, f=\lim _{N \rightarrow \infty} \frac{1}{2 \pi} \sum_{n=-N}^{N}\left\langle f, f_{n}\right\rangle f_{n}$ with respect to the uniform norm."
Give a brief explanation why or why not.
10. Let $(X,\|\cdot\|)$ be a normed linear space and let $\left(X^{*},\|\cdot\|_{X^{*}}\right)$ denote its dual Banach space of bounded linear functionals. Recall that $\|\varphi\|_{X^{*}}=\sup _{\|x\|=1}|\varphi(x)|$ for $\varphi \in$ X^{*}.
(a) Prove that for each $x \in X$ there exists $\varphi \in X^{*}$ with $\|\varphi\|_{X^{*}}=1$ and $\|x\|=\varphi(x)$.
(b) Prove that the linear map $\iota: X \rightarrow X^{* *}$ given by

$$
\iota(x)(\varphi)=\varphi(x) ; \quad\left(x \in X, \varphi \in X^{*}\right)
$$

is an isometry.
(c) A Banach space X is called reflexive if $\iota(X)=X^{* *}$. Prove that the Banach space

$$
\ell^{1}=\left\{f: \mathbb{N} \rightarrow \mathbb{C}\left|\|f\|_{1}=\sum_{k}\right| f(k) \mid<\infty\right\}
$$

is not reflexive.
(Hint: Consider a weak-* cluster point of the sequence $\left(\iota\left(f_{n}\right)\right)_{n \in \mathbb{N}} \subset\left(\ell^{1}\right)^{* *}$, where $f_{n} \in \ell^{1}$ is the unit vector

$$
f_{n}(k)= \begin{cases}\frac{1}{n}, & k \leq n \\ 0, & k>n\end{cases}
$$

11. Let $\left(g_{n}\right)_{n \in \mathbb{N}} \subseteq C([0,1])$ be a sequence of non-negative continuous functions. Assume that for each $k=0,1,2, \ldots$, the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{k} g_{n}(x) d x \quad \text { exists. }
$$

Prove that there exists a unique finite positive Radon measure μ on $[0,1]$ such that

$$
\int_{0}^{1} f(x) d \mu(x)=\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g_{n}(x) d x \quad \text { for all } f \in C([0,1])
$$

12. Let X be a locally compact Hausdorff space equipped with a Radon probability measure μ. Let $E \subseteq L^{2}(X, \mu)$ be a closed linear subspace and assume that E is contained in $C_{0}(X)$. The goal of this problem is to prove that $\operatorname{dim} E<\infty$ by justifying the following steps:
(a) There exists a constant $1 \leq K<\infty$ such that

$$
\|f\|_{2} \leq\|f\|_{u} \leq K\|f\|_{2} \quad \text { for all } f \in E
$$

where $\|\cdot\|_{u}$ denotes the uniform norm. (Hint: Use the closed graph theorem for one of the inequalities.)
(b) For each $x \in X$, there exists a unique $g_{x} \in E$ such that $\left\|g_{x}\right\|_{2} \leq K$ and

$$
f(x)=\left\langle f, g_{x}\right\rangle \quad \text { for all } f \in E
$$

(c) Let $\left(f_{i}\right)_{i \in I}$ be any orthonormal basis for E. Then

$$
\sum_{i \in I}\left|f_{i}(x)\right|^{2}=\left\|g_{x}\right\|_{2}^{2} \leq K^{2} \quad \text { for all } x \in X
$$

(d) $\operatorname{dim} E=|I| \leq K^{2}$.

