Real Analysis Qualifying Exam

August 2019

Each problem is worth 10 points. Work each problem on a separate piece of paper.

1. Let (X, \mathcal{M}, μ) be a measure space and f a measurable non-negative function on X. Define $\nu : \mathcal{M} \to [0, \infty]$ by

$$\nu(E) = \int_E f d\mu.$$

- (a) Prove that ν is a measure.
- (b) Prove that $g \in L^1(\nu)$ if and only if $gf \in L^1(\mu)$ and in that case $\int_X gd\nu = \int_X gfd\mu$.
- 2. (a) State Fatou's lemma.
 - (b) State the dominated convergence theorem.
 - (c) Let f_n, g_n, h_n, f, g, h be measurable functions on \mathbb{R}^n satisfying $f_n \leq g_n \leq h_n, f_n \to f$ a.e., $g_n \to g$ a.e., and $h_n \to h$ a.e. Suppose moreover that $f, h \in L^1$ and $\int f_n \to \int f, \int g_n \to g$. Prove that $g \in L^1$ and $\int g_n \to \int g$.
- 3. Let $\{A_k\}_{k=1}^{\infty}$ be measurable subsets of a measure space and define B_m to be the set of all points which are contained in at least m of the sets $\{A_k\}_{k=1}^{\infty}$. Prove that B_m is measurable and

$$\mu(B_m) \le \frac{1}{m} \sum_{k=1}^{\infty} \mu(A_k)$$

- 4. Let *E* be a subset of \mathbb{R} which is not Lebesgue measurable. Prove that there exists an $\eta > 0$ such that for any two Lebesgue measurable sets *A*, *B* satisfying $A \subseteq E \subseteq B$ one has $\lambda(B \setminus A) > \eta$, where λ denotes Lebesgue measure.
- 5. Let $\{A_k\}_{k=1}^{\infty}$ be Lebesgue measurable sets in \mathbb{R}^n equipped with Lebesgue measure λ .
 - (a) Prove that if $A_k \subseteq A_{k+1}$ for all k then $\lambda(\bigcup_{k=1}^{\infty} A_k) = \lim_{k \to \infty} \lambda(A_k)$.
 - (b) Prove that if $A_{k+1} \subseteq A_k$ for all k and $\lambda(A_1) < \infty$, then $\lambda(\bigcap_{k=1}^{\infty} A_k) = \lim_{k \to \infty} \lambda(A_k)$.
 - (c) Give an example showing that without assuming $\lambda(A_1) < \infty$ the conclusion of the previous part does not hold.
- 6. Let X and Y be Banach spaces. Show that the linear space $X \oplus Y$ is a Banach space under the norm ||(x,y)|| = ||x|| + ||y||. Also determine (with justification) the dual $(X \oplus Y)^*$.
- 7. For each $n \in \mathbb{N}$ define on ℓ^{∞} the linear functional $\varphi_n(x) = n^{-1} \sum_{k=1}^n x(k)$. Let φ be a weak^{*} cluster point of the sequence $\{\varphi_n\}$. Show that φ does not belong to the image of ℓ^1 under the canonical embedding $\ell^1 \hookrightarrow (\ell^{\infty})^*$.
- 8. Let $T: X \to Y$ be a surjective linear map between Banach spaces and suppose that there is a $\lambda > 0$ such that $||Tx|| \ge \lambda ||x||$ for all $x \in X$. Show that T is bounded.
- 9. Let X be a compact metric space and μ a regular Borel measure on X. Let $f : X \to [0, \infty)$ be a continuous function and for each $n \in \mathbb{N}$ set $f_n(x) = f(x)^{1/n}$ for all $x \in X$. Show that $\int f_n d\mu \to \mu(\operatorname{supp} f)$ as $n \to \infty$, where $\operatorname{supp} f = \{x \in X : f(x) > 0\}$.
- 10. Let X be a compact metric space and let $x \in X$. Suppose that the point mass δ_x is the weak^{*} limit of a sequence of atomless Radon measures on X (viewing all of these measures as elements of $C(X)^*$). Show that every neighborhood of x is uncountable.