Real Analysis Qualifying Exam August, 2021

1. Let (X, Ω) be a measurable space and suppose that $(f_n)_{n=1}^{\infty}$ is a sequence of real valued measurable functions on X. Show that the set all of points $x \in X$ for which $(f_n(x))_{n=1}^{\infty}$ converges is a measurable set.

2. Suppose that X is a linear subspace of $L^{2021}([0, 1])$ that is closed as a subspace of $L^1([0, 1])$. Show that X is closed as a subspace of $L^{2021}([0, 1])$ and that $(X, \|\cdot\|_{2021})$ is isomorphic (meaning "linearly homeomorphic") to a Hilbert space.

3. Regard $L^{\infty}(0,1) = L^1(0,1)^*$. Prove that if $f \in L^{\infty}(0,1)$, then there is a sequence $(p_n)_{n=1}^{\infty}$ of polynomials such that $(1_{(0,1)}p_n)_{n=1}^{\infty}$ converges weak* to f.

4. Let a and b be real numbers satisfying a > b > 1. Evaluate

$$\lim_{n \to \infty} \int_0^\infty \frac{n |\cos(x)|}{1 + n^a x^b} \, dx$$

5. (a) (3 pts) State the closed graph theorem.

(b) (7 pts) Let $\alpha_n > 0$ (for $n \in \mathbb{N}$). Suppose that for any numbers $\gamma_n \ge 0$, we have

$$\sum_{n=1}^{\infty}\gamma_n^2<\infty\qquad\Longrightarrow\qquad\sum_{n=1}^{\infty}\frac{\gamma_n}{\sqrt{\alpha_n}}<\infty.$$

Show that we must have

$$\sum_{n=1}^{\infty} \frac{1}{\alpha_n} < \infty$$

6. Prove that if X is a separable Banach space then there is an injective bounded linear operator from X into ℓ^{2021} .

7. Prove that if C is a **weakly** compact subset of C[0, 1], then C is a **norm** compact subset of $L^2(0, 1)$. You may use the theorem that if a subset of a Banach space is weakly compact then it is weakly sequentially compact.

8. (a) (5 pts) Prove that every infinite dimensional vector space contains a linearly independent set whose linear span is the whole space.

(b) (5 pts) Prove that every infinite dimensional Banach space has a discontinuous linear functional.

9. Prove or disprove: There is a continuous function f from the reals to the reals such that for all rational numbers x, f(x) is irrational, and for all irrational numbers x, f(x) is rational.

10. Let F be a continuous, real-valued function on $[0,1] \times [0,1] \times [-1,1]$ and for f in the unit ball of $C_{\mathbb{R}}[0,1]$, define $G_f:[0,1] \to \mathbb{R}$ by

$$G_f(s) = \int_0^1 F(s, t, f(t)) dt.$$

Show that $\{G_f \mid f \in C_{\mathbb{R}}[0,1], \|f\| \leq 1\}$ is a pre-compact subset of $C_{\mathbb{R}}[0,1]$.