Real Analysis Qualifying Exam; January, 2009.

Work as many of these ten problems as you can in four hours. Start each problem on a new sheet of paper.

#1. Let $F \subset \mathbf{R}^n$ be compact and prove that the convex hull $\operatorname{conv}(F)$ is compact. (You may use without proof the theorem of Carathéodory that states that every point in the convex hull of any subset S of \mathbf{R}^n is a convex combination of n + 1 or fewer points of S.)

#2. Let (X, \mathfrak{M}, ρ) be a finite measure space. Suppose $\mathfrak{A} \subseteq \mathfrak{M}$ is an algebra of sets and $\mu : \mathfrak{A} \to \mathbf{C}$ is a complex, finitely additive measure such that $|\mu(E)| \leq \rho(E) < \infty$ for all $E \in \mathfrak{A}$. Show that there is a complex measure $\nu : \mathfrak{M} \to \mathbf{C}$, whose restriction to \mathfrak{A} is μ , and such that $|\nu(E)| \leq \rho(E)$ for all $E \in \mathfrak{M}$. (Hint: you may want to consider the set of simple functions of the form $\sum_{i=1}^{n} c_i \mathbf{1}_{E_i}$, for $E_i \in \mathfrak{A}$.)

#3. Given $1 \le p \le \infty$ and $f \in L^p([0,\infty))$, prove $\lim_{n \to \infty} \int_0^\infty f(x) e^{-nx} dx = 0.$

#4. For each bounded, real–valued, Lebesgue measurable function f on [0,1] prove that the sets

$$U(f) = \{(x, y) \mid x \in [0, 1], y \ge f(x)\},\$$

$$L(f) = \{(x, y) \mid x \in [0, 1], y \le f(x)\},\$$

$$G(f) = \{(x, f(x)) \mid x \in [0, 1]\}$$

are Lebesgue measurable subsets of $[0, 1] \times \mathbf{R}$. (You may want to consider simple functions first.) Then prove that G(f) is a null set (with respect to Lebesgue measure).

#5. Let $\phi : C_0(\mathbf{R}) \to \mathbf{C}$ be a bounded linear functional and suppose μ is a complex Borel measure on \mathbf{R} such that $\phi(f) = \int f d\mu$ for every rational function f over the field of complex numbers whose restriction to \mathbf{R} belongs to $C_0(\mathbf{R})$. Show that the formula $\phi(f) = \int f d\mu$ holds for all $f \in C_0(\mathbf{R})$.

#6. Let T be a surjective linear map from a Banach space X to a Banach space Y satisfying $||Tx|| \ge \frac{1}{2009} ||x||$ for all $x \in X$. Show that T is bounded.

- #7. Let X be an infinite dimensional Banach space. Show
- (a) the unit ball $\{x \in X \mid ||x|| \le 1\}$ is closed in the weak topology on X,
- (b) every nonempty, weakly open subset of X is unbounded and
- (c) the weak topology on X is not the topology of a complete metric on X.

#8. (a) Let (X, \mathcal{M}, μ) be a measure space and suppose $E_n \in \mathcal{M}$ are such that

$$\sum_{n=1}^{\infty} \mu(E_n) < \infty.$$
(1)

Show

$$\mu(\limsup_{n \to \infty} E_n) = 0, \tag{2}$$

where $\limsup_{n \to \infty} E_n = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} E_n$.

(b) Either prove or disprove that the conclusion (2) follows when hypothesis (1) is replaced by

$$\sum_{n=1}^{\infty} \mu(E_n)^2 < \infty.$$

#9. Let $K: [0,1] \times [0,1] \rightarrow \mathbf{R}$ be continuous. If $f \in L^1([0,1])$, set

$$(Tf)(x) = \int_0^1 K(x, y) f(y) dy, \qquad (x \in [0, 1]).$$

- (a) Show $Tf \in C([0, 1])$.
- (b) Let B be the unit ball of $L^1([0,1])$ and show that T(B) is relatively compact in C([0,1]).

#10. Let μ be a finite Borel measure on **R** that is absolutely continuous with respect to Lebesgue measure and show that for every Borel subset A of **R**, the map $t \mapsto \mu(A+t)$ is continuous from **R** to $[0, \infty)$, where $A + t = \{s + t \mid s \in A\}$. (Hint: you might first suppose A is an interval.)