Real Analysis Qualifying Exam

January 2011

Each problem is worth ten points. Work each problem on a separate piece of paper.

1. Working directly from the definition of almost everywhere convergence, prove that if $\left\{f_{n}\right\}_{n=0}^{\infty}$ is a sequence of measurable functions on a measure space (X, \mathscr{M}, μ) such that $\int_{X}\left|f_{n}-f_{0}\right|^{1 / 4} d \mu<n^{-2}$ for each n then $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to $f_{0} \mu$-almost everywhere.
2. Let K be a compact metric space. Show that $C(K)$ is separable.
3. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of measurable functions on a finite measure space (X, \mathscr{M}, μ). Recall that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is said to be uniformly integrable if for every $\varepsilon>0$ there exists a $\delta>0$ such that $\left|\int_{E} f_{n} d \mu\right|<\varepsilon$ for all measurable sets $E \subseteq X$ satisfying $\mu(E)<\delta$ and all n. Prove that if $\left\{f_{n}\right\}_{n=1}^{\infty}$ is uniformly integrable, $\sup _{n}\left\|f_{n}\right\|_{1}<\infty$, and $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges in measure to 0 , then $\left\|f_{n}\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$.
4. Let $1 \leq p<\infty$ and let f be a positive element of $L^{p}[0,1]$. Prove that the set $\left\{f^{1 / n}: n \in \mathbb{N}\right\}$ has compact closure in $L^{p}[0,1]$. Give an example to show that this is false when $p=\infty$.
5. Let X be a reflexive Banach space and K a nonempty closed convex subset of X. Prove that there exists an $x \in K$ such that $\|x\|=\inf _{y \in K}\|y\|$. Show that this x is unique in the case that X is a Hilbert space.
6. Let X be a Banach space such that X^{*} is separable. Prove that X is separable.
7. (a) State what it means for a function $f: \mathbb{R} \rightarrow \mathbb{R}$ to be absolutely continuous.
(b) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a function and let $0 \leq M<\infty$. Show that $|f(x)-f(y)| \leq M|x-y|$ for all $x, y \in \mathbb{R}$ if and only if f is absolutely continuous and $\left|f^{\prime}(x)\right| \leq M$ almost everywhere with respect to Lebesgue measure.
8. For a function $f:[0,1] \rightarrow \mathbb{R}$ define

$$
\|f\|_{L}=|f(0)|+\sup \left\{\frac{|f(x)-f(y)|}{|x-y|}: 0 \leq x<y \leq 1\right\}
$$

Prove that the set of all functions $f:[0,1] \rightarrow \mathbb{R}$ satisfying $\|f\|_{L}<\infty$ is dense in $L^{1}[0,1]$.
9. Let $g:[0,1] \rightarrow[0,1]$ be a continuous function. Determine, with proof, conditions on g which are equivalent to the property that $\lim _{n \rightarrow \infty}\left\|g^{n} f\right\|_{2}=0$ for all $f \in L^{2}[0,1]$.
10. (a) State Fubini's theorem.
(b) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence in $C\left([0,1]^{2}\right)$. Suppose that $f_{x, n} \rightarrow 0$ weakly in $L^{2}(\mu)$ for every $x \in[0,1]$, where $f_{x, n}(y)=f_{n}(x, y)$ for all $y \in[0,1]$ and μ is Lebesgue measure on $[0,1]$. Prove that $f_{n} \rightarrow 0$ weakly in $L^{2}(\mu \times \mu)$.

