Real analysis qualifying exam

January 2012

Each problem is worth ten points. Work each problem on a separate piece of paper.

1. Let A be the subset of [0, 1] consisting of numbers whose decimal expansions contain no sevens. Show that A is Lebesgue measurable, and find its measure. Why does non-uniqueness of decimal expansions not cause any problems?

2. Let the functions f_{α} be defined by

$$f_{\alpha}(x) = \begin{cases} x^{\alpha} \cos \frac{1}{x}, & x > 0, \\ 0, & x = 0. \end{cases}$$

Find all values of $\alpha \geq 0$ such that

- (a) f_{α} is continuous.
- (b) f_{α} is of bounded variation on [0, 1].
- (c) f_{α} is absolutely continuous on [0, 1].

Justify your answers.

3. Let \mathcal{F} denote the family of functions on [0, 1] of the form

$$f(x) = \sum_{n=1}^{\infty} a_n \sin(nx),$$

where a_n are real and $|a_n| \le 1/n^3$. State a general theorem and use that theorem to prove that any sequence in \mathcal{F} has a subsequence that converges uniformly on [0, 1].

4. Let *H* be a Hilbert space and $W \subset H$ a subspace. Show that $H = \overline{W} \oplus W^{\perp}$, where \overline{W} is the closure of *W*. Note. Do not just state this as a consequence of a standard result: prove the result.

5. Suppose A is a bounded linear operator on a Hilbert space H with the property that

$$||p(A)|| \le C \sup \{|p(z)| : z \in \mathbb{C}, |z| = 1\}$$

for all polynomials p with complex coefficients, and a fixed constant C. Show that to each pair $x, y \in H$, there corresponds a complex Borel measure μ on the circle $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ such that

$$\langle A^n x, y \rangle = \int z^n d\mu(z), n = 0, 1, 2, \dots$$

6. Let ϕ be the linear functional

$$\phi(f) = f(0) - \int_{-1}^{1} f(t) \, dt$$

- (a) Compute the norm of ϕ as a functional on the Banach space C[-1, 1] with uniform norm.
- (b) Compute the norm of ϕ as a functional on the normed vector space LC[-1, 1], which is C[-1, 1] with the L^1 norm.

Justify your answers.

7. Let X be a normed space, and $A \subset X$ a subset. Show that A is bounded (as a set) if and only if it is weakly bounded (that is, $f(A) \subset \mathbb{C}$ is bounded for each $f \in X^*$).

8. Let X be a topological vector space.

- (a) Define what this means.
- (b) Let $A \subset X$ be compact and $B \subset X$ be closed. Show that $A + B \subset X$ is closed.
- (c) Give an example indicating that the condition "A closed" is insufficient for the conclusion.

9. Let (X, \mathcal{M}, μ) be a finite measure space. Let $f, f_n \in L^3(X, d\mu)$ for $n \in \mathbb{N}$ be functions such that $f_n \to f \mu$ -a.e. and $|f_n| \leq M$ for all n. Let $g \in L^{3/2}(X, d\mu)$. Show that

$$\lim_{n \to \infty} \int f_n g \, d\mu = \int f g \, d\mu.$$

10. Let X be a σ -finite measure space, and $f_n : X \to \mathbb{R}$ a sequence of measurable functions on it. Suppose $f_n \to 0$ in L^2 and L^4 .

- (a) Does $f_n \to 0$ in L^1 ? Give a proof or a counterexample.
- (b) Does $f_n \to 0$ in L^3 ? Give a proof or a counterexample.
- (c) Does $f_n \to 0$ in L^5 ? Give a proof or a counterexample.