Real analysis qualifying exam

January 2012

Each problem is worth ten points. Work each problem on a separate piece of paper.

1. Let A be the subset of $[0,1]$ consisting of numbers whose decimal expansions contain no sevens. Show that A is Lebesgue measurable, and find its measure. Why does non-uniqueness of decimal expansions not cause any problems?
2. Let the functions f_{α} be defined by

$$
f_{\alpha}(x)= \begin{cases}x^{\alpha} \cos \frac{1}{x}, & x>0 \\ 0, & x=0\end{cases}
$$

Find all values of $\alpha \geq 0$ such that
(a) f_{α} is continuous.
(b) f_{α} is of bounded variation on $[0,1]$.
(c) f_{α} is absolutely continuous on $[0,1]$.

Justify your answers.
3. Let \mathcal{F} denote the family of functions on $[0,1]$ of the form

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin (n x)
$$

where a_{n} are real and $\left|a_{n}\right| \leq 1 / n^{3}$. State a general theorem and use that theorem to prove that any sequence in \mathcal{F} has a subsequence that converges uniformly on $[0,1]$.
4. Let H be a Hilbert space and $W \subset H$ a subspace. Show that $H=\bar{W} \oplus W^{\perp}$, where \bar{W} is the closure of W. Note. Do not just state this as a consequence of a standard result: prove the result.
5. Suppose A is a bounded linear operator on a Hilbert space H with the property that

$$
\|p(A)\| \leq C \sup \{|p(z)|: z \in \mathbb{C},|z|=1\}
$$

for all polynomials p with complex coefficients, and a fixed constant C. Show that to each pair $x, y \in H$, there corresponds a complex Borel measure μ on the circle $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ such that

$$
\left\langle A^{n} x, y\right\rangle=\int z^{n} d \mu(z), n=0,1,2, \ldots
$$

6. Let ϕ be the linear functional

$$
\phi(f)=f(0)-\int_{-1}^{1} f(t) d t
$$

(a) Compute the norm of ϕ as a functional on the Banach space $C[-1,1]$ with uniform norm.
(b) Compute the norm of ϕ as a functional on the normed vector space $L C[-1,1]$, which is $C[-1,1]$ with the L^{1} norm.

Justify your answers.
7. Let X be a normed space, and $A \subset X$ a subset. Show that A is bounded (as a set) if and only if it is weakly bounded (that is, $f(A) \subset \mathbb{C}$ is bounded for each $f \in X^{*}$).
8. Let X be a topological vector space.
(a) Define what this means.
(b) Let $A \subset X$ be compact and $B \subset X$ be closed. Show that $A+B \subset X$ is closed.
(c) Give an example indicating that the condition " A closed" is insufficient for the conclusion.
9. Let (X, \mathcal{M}, μ) be a finite measure space. Let $f, f_{n} \in L^{3}(X, d \mu)$ for $n \in \mathbb{N}$ be functions such that $f_{n} \rightarrow f \mu$-a.e. and $\left|f_{n}\right| \leq M$ for all n. Let $g \in L^{3 / 2}(X, d \mu)$. Show that

$$
\lim _{n \rightarrow \infty} \int f_{n} g d \mu=\int f g d \mu
$$

10. Let X be a σ-finite measure space, and $f_{n}: X \rightarrow \mathbb{R}$ a sequence of measurable functions on it. Suppose $f_{n} \rightarrow 0$ in L^{2} and L^{4}.
(a) Does $f_{n} \rightarrow 0$ in L^{1} ? Give a proof or a counterexample.
(b) Does $f_{n} \rightarrow 0$ in L^{3} ? Give a proof or a counterexample.
(c) Does $f_{n} \rightarrow 0$ in L^{5} ? Give a proof or a counterexample.
