Real Analysis Qualifying Exam; January, 2013.

Work as many of these ten problems as you can in four hours. Start each problem on a new sheet of paper.

#1. Let f be a Lebesgue integrable, real-valued function on (0,1) and for $x \in (0,1)$ define

$$g(x) = \int_{x}^{1} t^{-1} f(t) dt.$$

Show that g is Lebesgue integrable on (0,1) and that $\int_0^1 g(x) \, dx = \int_0^1 f(x) \, dx$.

#2. Let $f_n \in C[0,1]$. Show that $f_n \to 0$ weakly if and only if the sequence $(||f_n||)_{n=1}^{\infty}$ is bounded and f_n converges pointwise to 0.

#3. Let (X, μ) be a measure space with $0 < \mu(X) \leq 1$ and let $f : X \to \mathbf{R}$ be measurable. State the definition of $||f||_p$ for $p \in [1, \infty]$. Show that $||f||_p$ is a monotone increasing function of $p \in [1, \infty)$ and that $\lim_{p \to \infty} ||f||_p = ||f||_{\infty}$.

#4. (a) Is there a signed Borel measure μ on [0, 1] such that

$$p'(0) = \int_0^1 p(x) \, d\mu(x)$$

for all real polynomials p of degree at most 19?

(b) Is there a signed Borel measure μ on [0, 1] such that

$$p'(0) = \int_0^1 p(x) \, d\mu(x)$$

for all real polynomials p?

(Justify your answers).

#5. Let \mathcal{F} be the set of all real-valued functions on [0,1] of the form

$$f(t) = \frac{1}{\prod_{j=1}^{n} (t - c_j)}$$

for natural numbers n and for real numbers $c_j \notin [0, 1]$. Prove or disprove: for all continuous, real-valued functions g and h on [0, 1] such that g(t) < h(t) for all $t \in [0, 1]$, there is a function $a \in \operatorname{span} \mathcal{F}$ such that g(t) < a(t) < h(t) for all $t \in [0, 1]$.

#6. Let $k : [0,1] \times [0,1] \to \mathbf{R}$ be continuous and let $1 . For <math>f \in L^p[0,1]$, let Tf be the function on [0,1] defined by

$$(Tf)(x) = \int_0^1 k(x, y) f(y) \, dy$$

Show that Tf is a continuous function on [0, 1] and that the image under T of the unit ball in $L^p[0, 1]$ has compact closure in C[0, 1]. #7. (a) Define the total variation of a function $f : [0, 1] \to \mathbf{R}$ and absolute continuity of f. (b) Suppose $f : [0, 1] \to \mathbf{R}$ is absolutely continuous and define $g \in C[0, 1]$ by

$$g(x) = \int_0^1 f(xy) \, dy$$

Show that g is absolutely continuous.

#8. (a) State the definition of absolute continuity, $\nu \ll \mu$, for positive measures μ and ν , and state the Radon–Nikodym Theorem, (or the Lebesgue–Radon–Nikodym Theorem, if you prefer.)

(b) Suppose that we have $\nu_1 \ll \mu_1$ and $\nu_2 \ll \mu_2$ for positive measures ν_i and μ_i on measurable spaces (X_i, \mathcal{M}_i) , (i = 1, 2). Show that we have $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$, and

$$\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}(x, y) = \frac{d\nu_1}{d\mu_1}(x)\frac{d\nu_2}{d\mu_2}(y).$$

#9. (a) Let E be a nonzero Banach space and show that for every $x \in E$ there is $\phi \in E^*$ such that $\|\phi\| = 1$ and $|\phi(x)| = \|x\|$.

(b) Let E and F be Banach spaces, let $\pi : E \to F$ be a bounded linear map and let $\pi^* : F^* \to E^*$ be the induced map on dual spaces. Show that $\|\pi^*\| = \|\pi\|$.

#10. Let X be a real Banach space and suppose C is a closed subset of X such that

- (i) $x_1 + x_2 \in C$ for all $x_1, x_2 \in C$,
- (ii) $\lambda x \in C$ for all $x \in C$ and $\lambda > 0$,
- (iii) for all $x \in X$ there exist $x_1, x_2 \in C$ such that $x = x_1 x_2$.

Prove that, for some M > 0, the unit ball of X is contained in the closure of

 $\{x_1 - x_2 \mid x_i \in C, \ \|x_i\| \le M, \ (i = 1, 2)\}.$

Deduce that every $x \in X$ can be written $x = x_1 - x_2$, with $x_i \in C$ and $||x_i|| \leq 2M ||x||$, (i = 1, 2).