Real Analysis Qualifying Exam; January, 2013.

Work as many of these ten problems as you can in four hours. Start each problem on a new sheet of paper.
\#1. Let f be a Lebesgue integrable, real-valued function on $(0,1)$ and for $x \in(0,1)$ define

$$
g(x)=\int_{x}^{1} t^{-1} f(t) d t
$$

Show that g is Lebesgue integrable on $(0,1)$ and that $\int_{0}^{1} g(x) d x=\int_{0}^{1} f(x) d x$.
$\# 2$. Let $f_{n} \in C[0,1]$. Show that $f_{n} \rightarrow 0$ weakly if and only if the sequence $\left(\left\|f_{n}\right\|\right)_{n=1}^{\infty}$ is bounded and f_{n} converges pointwise to 0 .
\#3. Let (X, μ) be a measure space with $0<\mu(X) \leq 1$ and let $f: X \rightarrow \mathbf{R}$ be measurable. State the definition of $\|f\|_{p}$ for $p \in[1, \infty]$. Show that $\|f\|_{p}$ is a monotone increasing function of $p \in[1, \infty)$ and that $\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}$.
\#4. (a) Is there a signed Borel measure μ on $[0,1]$ such that

$$
p^{\prime}(0)=\int_{0}^{1} p(x) d \mu(x)
$$

for all real polynomials p of degree at most 19 ?
(b) Is there a signed Borel measure μ on $[0,1]$ such that

$$
p^{\prime}(0)=\int_{0}^{1} p(x) d \mu(x)
$$

for all real polynomials p ?
(Justify your answers).
\#5. Let \mathcal{F} be the set of all real-valued functions on $[0,1]$ of the form

$$
f(t)=\frac{1}{\prod_{j=1}^{n}\left(t-c_{j}\right)}
$$

for natural numbers n and for real numbers $c_{j} \notin[0,1]$. Prove or disprove: for all continuous, real-valued functions g and h on $[0,1]$ such that $g(t)<h(t)$ for all $t \in[0,1]$, there is a function $a \in \operatorname{span} \mathcal{F}$ such that $g(t)<a(t)<h(t)$ for all $t \in[0,1]$.
\#6. Let $k:[0,1] \times[0,1] \rightarrow \mathbf{R}$ be continuous and let $1<p<\infty$. For $f \in L^{p}[0,1]$, let $T f$ be the function on $[0,1]$ defined by

$$
(T f)(x)=\int_{0}^{1} k(x, y) f(y) d y
$$

Show that $T f$ is a continuous function on $[0,1]$ and that the image under T of the unit ball in $L^{p}[0,1]$ has compact closure in $C[0,1]$.
\#7. (a) Define the total variation of a function $f:[0,1] \rightarrow \mathbf{R}$ and absolute continuity of f.
(b) Suppose $f:[0,1] \rightarrow \mathbf{R}$ is absolutely continuous and define $g \in C[0,1]$ by

$$
g(x)=\int_{0}^{1} f(x y) d y
$$

Show that g is absolutely continuous.
\#8. (a) State the definition of absolute continuity, $\nu \ll \mu$, for positive measures μ and ν, and state the Radon-Nikodym Theorem, (or the Lebesgue-Radon-Nikodym Theorem, if you prefer.)
(b) Suppose that we have $\nu_{1} \ll \mu_{1}$ and $\nu_{2} \ll \mu_{2}$ for positive measures ν_{i} and μ_{i} on measurable spaces $\left(X_{i}, \mathcal{M}_{i}\right),(i=1,2)$. Show that we have $\nu_{1} \times \nu_{2} \ll \mu_{1} \times \mu_{2}$, and

$$
\frac{d\left(\nu_{1} \times \nu_{2}\right)}{d\left(\mu_{1} \times \mu_{2}\right)}(x, y)=\frac{d \nu_{1}}{d \mu_{1}}(x) \frac{d \nu_{2}}{d \mu_{2}}(y) .
$$

\#9. (a) Let E be a nonzero Banach space and show that for every $x \in E$ there is $\phi \in E^{*}$ such that $\|\phi\|=1$ and $|\phi(x)|=\|x\|$.
(b) Let E and F be Banach spaces, let $\pi: E \rightarrow F$ be a bounded linear map and let $\pi^{*}: F^{*} \rightarrow E^{*}$ be the induced map on dual spaces. Show that $\left\|\pi^{*}\right\|=\|\pi\|$.
$\# 10$. Let X be a real Banach space and suppose C is a closed subset of X such that
(i) $x_{1}+x_{2} \in C$ for all $x_{1}, x_{2} \in C$,
(ii) $\lambda x \in C$ for all $x \in C$ and $\lambda>0$,
(iii) for all $x \in X$ there exist $x_{1}, x_{2} \in C$ such that $x=x_{1}-x_{2}$.

Prove that, for some $M>0$, the unit ball of X is contained in the closure of

$$
\left\{x_{1}-x_{2} \mid x_{i} \in C,\left\|x_{i}\right\| \leq M,(i=1,2)\right\} .
$$

Deduce that every $x \in X$ can be written $x=x_{1}-x_{2}$, with $x_{i} \in C$ and $\left\|x_{i}\right\| \leq 2 M\|x\|$, ($i=1,2$).

