Qualifying Examination in Real Variables, January 2014

General Instructions:

- (1) Use for each problem an extra sheet.
- (2) Unless stated otherwise, you may use results from Folland's book, but you need to state them carefully (it is not necessary to remember their names).

Problems:

(1) Let (X, \mathcal{M}, μ) be a non atomic measure space with $\mu(X) > 0$. Show that there is a measurable $f : X \to [0, \infty)$, for which

$$\int f(x) \, d\mu(x) = \infty.$$

- (2) Assume that μ is a finite measure on \mathbb{R}^n . Prove that there is a closed set $A \subset \mathbb{R}^n$ with the property that for each closed $B \subsetneq A$ it follows that $\mu(A \setminus B) \neq 0$.
- (3) For a nonnegative function $f \in L_1([0, 1])$, prove that

$$\lim_{n \to \infty} \int_0^1 \sqrt[n]{f(x)} \, dx = m \big(\{ x : f(x) > 0 \} \big).$$

(4) Let f be Lebesgue integrable on (0, 1). For 0 < x < 1 define

$$g(x) = \int_x^1 t^{-1} f(t) dt.$$

Prove that g is Lebesgue integrable on (0, 1) and that

$$\int_0^1 g(x)dx = \int_0^1 f(x)dx.$$

(5) Assume that ν and μ are two finite measures on a measurable space (X, \mathcal{M}) . Prove that

$$\nu \ll \mu \iff \lim_{n \to \infty} (\nu - n\mu)^+ = 0.$$

- (6) Let (p_n) be a sequence of polynomials which converges uniformly on [0, 1] to some function f, and assume that f is not a polynomial. Prove the $\lim_{n\to\infty} \deg(p_n) = \infty$, where $\deg(p)$ denotes the degree of a polynomial p.
- (7) Let (f_n) be sequence of non zero bounded linear functionals on a Banach space X. Show that there is an $x \in X$ so that $f_n(x) \neq 0$, for all $n \in \mathbb{N}$.
- (8) Assume that $T : \ell_1 \to \ell_2$ is bounded, linear and one-to-one. Prove that $T(\ell_1)$ is not closed in ℓ_2 .
- (9) For a uniformly bounded sequence (f_n) in C[0, 1](i.e. $\sup_{n \in \mathbb{N}} \sup_{\xi \in [0,1]} |f_n(\xi)| < \infty$) show that
- f_n converges weakly to $0 \iff \lim_{n \to \infty} f_n(\xi) = 0$ for all $\xi \in [0, 1]$.

Is the equivalence true if we do not assume that (f_n) is uniformly bounded, explain?

(10) Assume that f is a measurable and non negative function on $[0,1]^2$ and that $1 \le r . Show that$

$$\left(\int_{0}^{1} \left(\int_{0}^{1} f^{r}(x,y) \, dy\right)^{p/r} \, dx\right)^{1/p} \leq \left(\int_{0}^{1} \left(\int_{0}^{1} f^{p}(x,y) \, dx\right)^{r/p} \, dy\right)^{1/r}$$

Hint: Let s = p/r, let $1 < s' < \infty$ be the conjugate of s and let

$$F := [0,1] \to \mathbb{R}_0^+, \quad x \mapsto \int_0^1 f^r(x,y) \, dy.$$

Then consider for an appropriate function $h \in L_{s'}[0, 1]$ the product hF.