REAL ANALYSIS QUALIFYING EXAMINATION JANUARY 2015

10 pts per question. Start each problem on a separate sheet. Results from Folland's book can be quoted without proof but should either be named or be carefully stated.

1. Let $f \in L^1(\mathbb{R})$. If

$$\int_{a}^{b} f(x) \, dx = 0$$

for all rational numbers a < b, prove that f(x) = 0 for almost all $x \in \mathbb{R}$.

2. Let $\{g_n\}_{n=1}^{\infty}$ and g be in $L^1(\mathbb{R})$ and satisfy

$$\lim_{n \to \infty} \|g_n - g\|_1 = 0.$$

Prove that there is a subsequence of $\{g_n\}_{n=1}^{\infty}$ that converges pointwise almost everywhere to g.

3. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$. Let $\mathcal{N} \subseteq \mathcal{M}$ be a σ -algebra. If $f \ge 0$ is \mathcal{M} -measurable and μ -integrable then prove that there exists an \mathcal{N} -measurable and μ -integrable function $g \ge 0$ so that

$$\int_E g \, d\mu = \int_E f \, d\mu, \quad E \in \mathcal{N}.$$

- 4. (i) State the closed graph theorem.
 - (ii) If H is a Hibert space and $T: H \to H$ is a linear operator satisfying

$$\langle Tx, y \rangle = \langle x, Ty \rangle, \quad x, y \in H,$$

then prove that T is bounded.

5. Let $f, g \in L^1(\mathbb{R})$. Prove that $h \in L^1(\mathbb{R})$, where h(x) is defined by

$$h(x) = \int_{\mathbb{R}} f(y)g(x-y) \, dy$$

whenever this integral is finite.

- 6. Let $f, g \in C[0, 1]$ with f(x) < g(x) for all $x \in [0, 1]$.
 - (i) Prove that there is a polynomial p(x) so that

$$f(x) < p(x) < g(x), \quad x \in [0, 1].$$

(ii) Prove that there is an increasing sequence of polynomials $\{p_n(x)\}_{n=1}^{\infty}$ so that

$$f(x) < p_n(x) < g(x), \quad x \in [0, 1],$$

and $p_n \to g$ uniformly on [0, 1].

- 7. If $f \in L^2(\mathbb{R})$, $g \in L^3(\mathbb{R})$, and $h \in L^6(\mathbb{R})$ then prove that the product fgh is in $L^1(\mathbb{R})$.
- 8. (i) A point y in a metric space Y is isolated if the set $\{y\}$ is both open and closed in Y. Prove that $y \in Y$ is isolated if and only if the complement $\{y\}^c$ is not dense in Y.
 - (ii) Let X be a countable nonempty complete metric space. Prove that the set of isolated points is dense in X.
- 9. Suppose that $f \in L^p(\mathbb{R})$ for all $p \in (1, 2)$ and that $\sup_{p \in (1, 2)} ||f||_p < \infty$. Prove that $f \in L^2(\mathbb{R})$ and that

$$\lim_{p \to 2^-} \|f\|_p = \|f\|_2.$$

10. Let $(X, \|\cdot\|)$ be a normed vector space with a subspace Y and let $\|\cdot\|_1$ be another norm on Y that satisfies

$$\frac{1}{K} \|y\|_1 \le \|y\| \le K \|y\|_1, \quad y \in Y,$$

where K > 1 is a fixed constant. Define S to be the set of linear functionals $\phi: X \to \mathbb{R}$ satisfying

- (a) $|\phi(y)| \le ||y||_1, \quad y \in Y,$
- (b) $|\phi(x)| \le K ||x||, \quad x \in X.$

Prove the following statements:

- (i) $||x||_2 := \sup\{|\phi(x)| : \phi \in S\}$ defines a norm on X.
- (ii) For $y \in Y$, $||y||_1 = ||y||_2$.
- (iii) The norms $\|\cdot\|$ and $\|\cdot\|_2$ are equivalent on X.