REAL ANALYSIS QUALIFYING EXAMINATION JANUARY 2015

10 pts per question. Start each problem on a separate sheet. Results from Folland's book can be quoted without proof but should either be named or be carefully stated.

1. Let $f \in L^{1}(\mathbb{R})$. If

$$
\int_{a}^{b} f(x) d x=0
$$

for all rational numbers $a<b$, prove that $f(x)=0$ for almost all $x \in \mathbb{R}$.
2. Let $\left\{g_{n}\right\}_{n=1}^{\infty}$ and g be in $L^{1}(\mathbb{R})$ and satisfy

$$
\lim _{n \rightarrow \infty}\left\|g_{n}-g\right\|_{1}=0
$$

Prove that there is a subsequence of $\left\{g_{n}\right\}_{n=1}^{\infty}$ that converges pointwise almost everywhere to g.
3. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)<\infty$. Let $\mathcal{N} \subseteq \mathcal{M}$ be a σ-algebra. If $f \geq 0$ is \mathcal{M}-measurable and μ-integrable then prove that there exists an \mathcal{N}-measurable and μ-integrable function $g \geq 0$ so that

$$
\int_{E} g d \mu=\int_{E} f d \mu, \quad E \in \mathcal{N} .
$$

4. (i) State the closed graph theorem.
(ii) If H is a Hibert space and $T: H \rightarrow H$ is a linear operator satisfying

$$
\langle T x, y\rangle=\langle x, T y\rangle, \quad x, y \in H,
$$

then prove that T is bounded.
5. Let $f, g \in L^{1}(\mathbb{R})$. Prove that $h \in L^{1}(\mathbb{R})$, where $h(x)$ is defined by

$$
h(x)=\int_{\mathbb{R}} f(y) g(x-y) d y
$$

whenever this integral is finite.
6. Let $f, g \in C[0,1]$ with $f(x)<g(x)$ for all $x \in[0,1]$.
(i) Prove that there is a polynomial $p(x)$ so that

$$
f(x)<p(x)<g(x), \quad x \in[0,1] .
$$

(ii) Prove that there is an increasing sequence of polynomials $\left\{p_{n}(x)\right\}_{n=1}^{\infty}$ so that

$$
f(x)<p_{n}(x)<g(x), \quad x \in[0,1]
$$

and $p_{n} \rightarrow g$ uniformly on $[0,1]$.
7. If $f \in L^{2}(\mathbb{R}), g \in L^{3}(\mathbb{R})$, and $h \in L^{6}(\mathbb{R})$ then prove that the product $f g h$ is in $L^{1}(\mathbb{R})$.
8. (i) A point y in a metric space Y is isolated if the set $\{y\}$ is both open and closed in Y. Prove that $y \in Y$ is isolated if and only if the complement $\{y\}^{c}$ is not dense in Y.
(ii) Let X be a countable nonempty complete metric space. Prove that the set of isolated points is dense in X.
9. Suppose that $f \in L^{p}(\mathbb{R})$ for all $p \in(1,2)$ and that $\sup _{p \in(1,2)}\|f\|_{p}<\infty$. Prove that $f \in L^{2}(\mathbb{R})$ and that

$$
\lim _{p \rightarrow 2-}\|f\|_{p}=\|f\|_{2}
$$

10. Let $(X,\|\cdot\|)$ be a normed vector space with a subspace Y and let $\|\cdot\|_{1}$ be another norm on Y that satisfies

$$
\frac{1}{K}\|y\|_{1} \leq\|y\| \leq K\|y\|_{1}, \quad y \in Y
$$

where $K>1$ is a fixed constant. Define S to be the set of linear functionals $\phi: X \rightarrow \mathbb{R}$ satisfying
(a) $|\phi(y)| \leq\|y\|_{1}, \quad y \in Y$,
(b) $|\phi(x)| \leq K\|x\|, \quad x \in X$.

Prove the following statements:
(i) $\|x\|_{2}:=\sup \{|\phi(x)|: \phi \in S\}$ defines a norm on X.
(ii) For $y \in Y,\|y\|_{1}=\|y\|_{2}$.
(iii) The norms $\|\cdot\|$ and $\|\cdot\|_{2}$ are equivalent on X.

