Real Analysis Qualiftying Exam
 January 2016

Do as many problems as you can. Start each problem on a separate sheet of paper. Unless otherwise specified, the measure involved in each problem is the Lebesgue measure.
$\# 1$. Let E be a measurable subset of $[0,1]$. Suppose there exists $\alpha \in(0,1)$ such that

$$
m(E \cap J) \geq \alpha \cdot m(J)
$$

for all subintervals J of $[0,1]$. Prove that $m(E)=1$.
$\# 2$. Let $f, g \in L^{1}([0,1])$. Suppose

$$
\int_{0}^{1} x^{n} f(x) d x=\int_{0}^{1} x^{n} g(x) d x
$$

for all integers $n \geq 0$. Prove that $f(x)=g(x)$ a.e.
$\# 3$. Let $f, g \in L^{1}([0,1])$. Assume for all functions $\varphi \in C^{\infty}[0,1]$ with $\varphi(0)=\varphi(1)$, we have

$$
\int_{0}^{1} f(t) \varphi^{\prime}(t) d t=-\int_{0}^{1} g(t) \varphi(t) d t
$$

Show that f is absolutely continuous and $f^{\prime}=g$ a.e.
\#4. Let $\left\{g_{n}\right\}$ be a sequence of measurable functions on $[0,1]$ such that
(i) $\left|g_{n}(x)\right| \leq C$, for a.e. $x \in[0,1]$
(ii) and $\lim _{n \rightarrow \infty} \int_{0}^{a} g_{n}(x) d x=0$ for every $a \in[0,1]$.

Prove that for each $f \in L^{1}([0,1])$, we have

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g_{n}(x) d x=0
$$

\#5. (a) Let X be a normed vector space and Y be a closed linear subspace of X. Assume Y is a proper subspace, that is, $Y \neq X$. Show that, for $\forall 0<\varepsilon<1$, there is an element $x \in X$ such that $\|x\|=1$ and

$$
\inf _{y \in Y}\|x-y\|>1-\varepsilon
$$

(b) Use part (a) to prove that, if X is an infinite dimensional normed vector space, then the unit ball of X is not compact.
$\# 6$. Let $\left\{f_{k}\right\}$ be a sequence of increasing functions on $[0,1]$. Suppose

$$
\sum_{k=1}^{\infty} f_{k}(x)
$$

converges for all $x \in[0,1]$. Denote the limit function by f, that is,

$$
f(x)=\sum_{k=1}^{\infty} f_{k}(x)
$$

Prove that

$$
f^{\prime}(x)=\sum_{k=1}^{\infty} f_{k}^{\prime}(x), \quad \text { a.e. } x \in[0,1] .
$$

$\# 7$. Suppose $f, g:[a, b] \rightarrow \mathbb{R}$ are both continuous and of bounded variation. Show that the set

$$
\left\{(f(t), g(t)) \in \mathbb{R}^{2}: t \in[a, b]\right\}
$$

cannot cover the entire unit square $[0,1] \times[0,1]$.
\#8. Prove the following two statements:
(a) suppose f is a measurable function on $[0,1]$, then

$$
\|f\|_{L^{\infty}}=\lim _{p \rightarrow \infty}\|f\|_{L^{p}}
$$

(b) If $f_{n} \geq 0$ and $f_{n} \rightarrow f$ in measure, then $\int f \leq \liminf \int f_{n}$.
\#9. Suppose $\left\{f_{n}\right\}$ is a sequence of functions in $L^{2}([0,1])$ such that $\left\|f_{n}\right\|_{L^{2}} \leq 1$. If f is measurable and $f_{n} \rightarrow f$ in measure, then
(a) $f \in L^{2}([0,1])$;
(b) $f_{n} \rightarrow f$ weakly in L^{2};
(c) $f_{n} \rightarrow f$ with respect to norm in L^{p} for $1 \leq p<2$.

Hint for part (b): Use Vitali convergence theorem, that is, if $g_{n} \rightarrow g$ pointwise a.e. on $[0,1]$ and $\left\{g_{n}\right\}$ is uniformly integrable, then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} g_{n}=\int_{0}^{1} g
$$

Recall that $\left\{g_{n}\right\}$ being uniformly integrable means that for each $\varepsilon>0$, there exists a $\delta>0$ such that

$$
\int_{A}\left|g_{n}\right|<\varepsilon
$$

for all n and all measurable $A \subseteq[0,1]$ with $m(A)<\delta$.
Hint for part (c): use the fact that, if g_{n} is a sequence in $L^{p}([0,1])$ that converges pointwise a.e. to $g \in L^{p}([0,1])$, then g_{n} converges to g in norm if and only if $\left\{\left|g_{n}\right|^{p}\right\}$ is uniformly integrable.
$\# 10$. Suppose E is a measurable subset of $[0,1]$ with Lebesgue measure $m(E)=\frac{99}{100}$. Show that there exists a number $x \in[0,1]$ such that for all $r \in(0,1)$,

$$
m(E \cap(x-r, x+r)) \geq \frac{r}{4} .
$$

Hint: Use the Hardy-Littlewood maximal inequality:

$$
m(\{x \in \mathbb{R}: M f(x) \geq \alpha\}) \leq \frac{3}{\alpha}\|f\|_{1}
$$

for all $f \in L^{1}(\mathbb{R})$. Here $M f$ denotes the Hardy-Littlewood Maximal function of f.

