Real Analysis Qualifying Exam, January, 2017

(1) Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. Prove directly from the definition of convergence almost everywhere that if for all n, $\mu\left\{x \in \Omega:\left|f_{n}(x)\right|>1 / n\right\}<n^{-3 / 2}$, then $f_{n} \rightarrow 0$ a.e. (μ).
(2) Find all f in $L^{1}(1,2)$ such that for every natural number n we have $\int_{1}^{2} x^{2 n} f(x) d x=0$. Give reasons for all assertions you make.
(3) A. Prove that there exists a sequence of measurable functions g_{n} on $[0,1]$ such that:
(a) $g_{n}(x) \geq 0$ for any $x \in[0,1]$;
(b) $\lim _{n \rightarrow \infty} g_{n}(x)=0$ a.e.;
(c) For any continuous function $f \in C[0,1]$,

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g_{n}(x) d x=\int_{0}^{1} f(x) d x
$$

B. If g_{n} is a sequence of measurable functions on $[0,1]$ such that (a), (b), and (c) are satisfied, what can you say about $\int_{0}^{1} \sup _{n} g_{n}(x) d x$?
(4) We say that a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ in $[0,1]$ is equidistributed (in $[0,1]$) if and only if for all intervals $[c, d] \subset[0,1]$,

$$
\lim _{n \rightarrow \infty} \frac{\left|\left\{a_{1}, \ldots, a_{n}\right\} \cap[c, d]\right|}{n}=d-c
$$

(Here $|A|$ denotes the number of elements in the set A.)
Let $\mu_{N}=\frac{1}{N} \sum_{1 \leq n \leq N} \delta_{a_{n}}$ with $\delta_{a_{n}}$ the point measure at a_{n}, that is, for any subset $S \in[0,1], \delta_{a_{n}}(S)=\left\{\begin{array}{ll}1 & \text { if } a_{n} \in S \\ 0 & \text { if } a_{n} \notin S\end{array}\right.$.
Show that $\left\{a_{n}\right\} \subset[0,1]$ is equidistributed if and only if

$$
\lim _{N \rightarrow \infty} \int_{0}^{1} f d \mu_{N}=\int_{0}^{1} f d m
$$

for all continuous functions on $[0,1]$, where m is Lebesgue measure.
(5) Consider the space $C([0,1])$ of real-valued continuous functions on the unit interval $[0,1]$. We denote by $\|f\|_{\infty}:=\sup _{x \in[0,1]}|f(x)|$ the supremum norm of $f \in C([0,1])$ and by $\|f\|_{2}:=\left(\int_{0}^{1}|f(x)|^{2} d x\right)^{\frac{1}{2}}$ the L^{2}-norm of $f \in C([0,1])$. Let S be a closed linear subspace of $\left(C([0,1]),\|\cdot\|_{\infty}\right)$. Show that if S is complete in the norm $\|\cdot\|_{2}$, then S is finite-dimensional.
(6) Prove that if a function $f:[0,1] \rightarrow \mathbb{R}$ is Lipschitz, with

$$
|f(x)-f(y)| \leq M|x-y|
$$

for all $x, y \in[0,1]$, then there is a sequence of continuously differentiable functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ such that
(i) $\left|f_{n}^{\prime}(x)\right| \leq M$ for all $x \in[0,1]$;
(ii) $f_{n}(x) \rightarrow f(x)$ for all $x \in[0,1]$.
(7) Given $f: \mathbb{R} \rightarrow \mathbb{R}$ bounded and uniformly continuous and K_{n} with $K_{n} \in L^{1}(\mathbb{R})$ for $n=1,2,3, \cdots$ such that
(i) $\left\|K_{n}\right\|_{1} \leq M<\infty, n=1,2,3, \cdots$.
(ii) $\int_{-\infty}^{\infty} K_{n}(x) d x \rightarrow 1$ as $n \rightarrow \infty$.
(iii) $\int_{\{x:|x|>\delta\}}^{\infty}\left|K_{n}(x)\right| \rightarrow 0$ as $n \rightarrow \infty$ for all $\delta>0$.

Show that $K_{n} * f \rightarrow f$ uniformly, where

$$
K_{n} * f(x)=\int_{-\infty}^{\infty} K_{n}(y) f(x-y) d y
$$

(8) A. Construct a Lebesgue measurable subset A of of \mathbb{R} so that for all reals $a<b, 0<m(A \cap[a, b])<b-a$, where m is Lebesgue measure on \mathbb{R}.
B. Suppose $A \subseteq \mathbb{R}$ is a Lebesgue measurable set and assume that

$$
m(A \cap(a, b)) \leq \frac{b-a}{2}
$$

for any $a, b \in \mathbb{R}, a<b$. Prove that $\mu(A)=0$.
(9) Prove or disprove that the unit ball of $L^{7}(0,1)$ is norm closed in $L^{1}(0,1)$.
(10) Let C be the Banach space of convergent sequences of real numbers under the supremum norm. Compute the extreme points of the closed unit ball, B, of C and determine whether B is the closed convex hull of its extreme points.
(11) Show that every convex continuous function defined on the closed unit ball of a reflexive Banach space achieves a minimum. (A convex function on a convex subset A of a normed space is a real valued function, f, on A s.t. for every $x, y \in A$ and every $0<\lambda<1$ we have $f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)$.)

