Real Analysis Qualifying Exam
 January, 2018

Solve as many of these ten problems as you can in four hours. Start the solution of each problem you attempt on a fresh sheet of paper.
\#1. Suppose U_{1}, U_{2}, \ldots are open subsets of $[0,1]$. In each case, either prove the statement or disprove it.
(a) If $\lambda\left(\bigcap_{n=1}^{\infty} U_{n}\right)=0$, then for some $n \geq 1$, we have $\lambda\left(\bar{U}_{n}\right)<1$, where λ is Lebesgue measure and \bar{U}_{n} is the closure of U_{n} in the usual topology on $[0,1]$.
(b) If $\bigcap_{n=1}^{\infty} U_{n}=\emptyset$, then for some $n \geq 1$, the set $[0,1] \backslash U_{n}$ contains a nonempty open interval.
\#2. Let X be a separable compact metric space and show that $C(X)$ is separable.
\#3. Let $f:[0,1] \rightarrow \mathbf{R}$ be a bounded Lebesgue measurable function such that $\int_{0}^{1} f(t) e^{n t} d t=0$ for every $n \in\{0,1,2, \ldots\}$. Prove that $f(t)=0$ for almost every $t \in[0,1]$.
\#4. (a) Prove that every compact subset of a Hausdorff space is closed.
(b) Let $f: X \rightarrow Y$ be a bijective continuous function between topological spaces. Suppose that X is compact and Y is Hausdorff and prove that f is a homeomorphism.
(c) Prove or disprove that if X is a dense subset of a topological space Y and if X is Hausdorff in the relative topology, then Y is also Hausdorff.
\#5. Prove that the following limit exists and compute its value:

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(\sum_{k=0}^{n} \frac{(-1)^{k} x^{2 k}}{(2 k)!}\right) e^{-2 x} d x
$$

\#6. Let X and Y be Banach spaces (over \mathbf{C}).
(a) A linear map $T: X \rightarrow Y$ is called adjointable if $T^{*} f \in X^{*}$ for every $f \in Y^{*}$. Prove that T is adjointable if and only if $T \in B(X, Y)$.
(b) Suppose a bounded linear functional $\Psi: X^{*} \rightarrow \mathbf{C}$ is weak*-continuous. Show (from the defintions) that there exists $x \in X$ such that $\Psi(\phi)=\phi(x)$.
(c) Let $S \in B\left(Y^{*}, X^{*}\right)$. Prove that S is weak*-weak*-continuous if and only if $S=T^{*}$ for some $T \in B(X, Y)$.
\#7. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of functions $f_{n}:[0,1] \rightarrow \mathbf{R}$.
(a) What does it mean for $\left\{f_{n} \mid n \geq 1\right\}$ to be equicontinuous?
(b) Suppose that for every n, f_{n} is differentiable and $\left|f_{n}^{\prime}(t)\right| \leq 1$ for all t. Prove that $\left\{f_{n} \mid n \geq 1\right\}$ is equicontinuous.
(c) Suppose the hypothesis of (b) holds and assume in addition that $\left|f_{n}(0)\right| \leq 1$ for every $n \geq 1$. Prove that there exist a continuous function $f:[0,1] \rightarrow \mathbf{R}$ and a subsequence $\left(f_{n(k)}\right)_{k=1}^{\infty}$ converging uniformly to f.
(d) Show by example that the limit function f need not be differentiable.
\#8. Let H be a complex Hilbert space. Given a non-empty set $E \subseteq H$ and $x \in H$, put $\operatorname{dist}(x, E)=\inf \{\|x-y\|: y \in E\}$ and $E^{\perp}=\{x \in H:\langle x, y\rangle=0 \quad \forall y \in E\}$.
(a) Let $H_{0} \subset H$ be a closed subspace and $x \in H$. Prove that there exists $x_{0} \in H_{0}$ such that $\left\|x-x_{0}\right\|=\operatorname{dist}\left(x, H_{0}\right)$.
(b) With x and x_{0} as above, prove that $x-x_{0}$ is orthogonal to H_{0}.
(c) Prove that $H=H_{0} \oplus H_{0}^{\perp}$ (the algebraic direct sum).
(d) Let $E \subseteq H$ be non-empty. Prove that $\left(E^{\perp}\right)^{\perp}=E$ if and only if E is a closed subspace.
\#9. Let \mathcal{V} be a vector space over \mathbf{R} or \mathbf{C}. Recall that a Hamel basis for \mathcal{V} is a linearly independent subset of \mathcal{V} whose linear span equals \mathcal{V}.
(a) Let $S \subseteq \mathcal{V}$ and suppose the linear span of S equals \mathcal{V}. Show that \mathcal{V} has a Hamel basis that is a subset of S.
(b) Suppose \mathcal{V} has an infinite Hamel basis and show that all Hamel bases of \mathcal{V} have the same cardinality.
$\# 10$. Suppose (X, \mathcal{M}, ρ) is a finite measure space and $\mathcal{A} \subseteq \mathcal{M}$ is an algebra of sets with a finitely additive complex measure $\mu: \mathcal{A} \rightarrow \mathbf{C}$ such that $|\mu(E)| \leq \rho(E)$ for all $E \in \mathcal{A}$. Show that there exists a complex measure $\nu: \mathcal{M} \rightarrow \mathbf{C}$ whose restriction to \mathcal{A} is μ and such that $|\nu(E)| \leq \rho(E)$ for all $E \in \mathcal{M}$. (Hint: you may want to consider the subspace $\mathcal{V} \subseteq L^{1}(\rho)$ that is spanned by the set of characteristic functions 1_{E} for $E \in \mathcal{A}$, and a certain linear functional on \mathcal{V}.)

