Instructions:

• Read problems very carefully. If you have any questions raise your hand.
• Every question is worth 10 points.
• Justify every non trivial step and give proper citations in your proofs.

1. True or false (prove or give a counter example)

(a) Let \(E \subset \mathbb{R} \) be a Borel set, then \(\{(x, y) \in \mathbb{R}^2 : x - y \in E\} \) is a Borel set in \(\mathbb{R}^2 \).
(b) Let \(E \subset \mathbb{Q} : = [0, 1] \times [0, 1] \). Assume that for every \(x, y \in [0, 1] \) the sets \(E_x = \{y \in [0, 1] : (x, y) \in E\} \) and \(E^y = \{x \in [0, 1] : (x, y) \in E\} \) are Borel. Then \(E \) is Borel.
(c) A function \(f : \mathbb{R} \to \mathbb{R} \) is called Lipschitz if there exists a \(\xi > 0 \) such that \(\forall x, y \in \mathbb{R} \), \(|f(x) - f(y)| \leq \xi |x - y| \). If \(A \subset \mathbb{R} \) is Lebesgue measurable and \(f \) is Lipschitz then \(f(A) \) is Lebesgue measurable.

2. Let \((X, \mathcal{F}, \mu) \) be a measure space. Is it true that for every measurable essentially bounded \(f : X \to \mathbb{R} \) we have \(\lim_{p \to \infty} \|f\|_p = \|f\|_\infty ? \) Give an answer both in the case that \(\mu \) is finite and the case \(\mu \) is \(\sigma \)-finite.

3. Let \(f : \mathbb{R} \to \mathbb{R} \) Lebesgue integrable and for \(n \in \mathbb{N} \) define

\[g_n(x) = n \int_{(x, x + \frac{1}{n})} f d\lambda. \]

(a) Prove that \(\lim_{n \to \infty} g_n = f \) \(\lambda \)-a.e.
(b) Pove that for every \(n \in \mathbb{N} \), \(\int_{\mathbb{R}} |g_n| d\lambda \leq \int_{\mathbb{R}} |f| d\lambda. \)
(c) Prove \(\lim_{n \to \infty} \int_{\mathbb{R}} |g_n| d\lambda = \int_{\mathbb{R}} |f| d\lambda. \)

4. Let \(f \in L^1((0, 1]^2, \lambda_2) \) such that \(\int_{(0,x) \times (0,y)} f d\lambda_2 = 0 \) for ever \(x, y \in (0, 1] \). Prove that \(f = 0 \) \(\lambda_2 \)-a.e.
5. Let \(\lambda \) be the Lebesgue measure on \(\mathbb{R} \). Let \(E \subset \mathbb{R} \) be Lebesgue measurable such that \(0 < \lambda(E) < \infty \). Prove that for all \(0 \leq \gamma < 1 \) there exists an open interval \(I \subset \mathbb{R} \) such that
\[
\lambda(E \cap I) \geq \gamma \lambda(I).
\]

6. Let \(X \) be a compact metrizable space and \(\{\mu_n\} \) a sequence of Borel measures on \(X \) with \(\mu_n(X) = 1 \) for every \(n \). Consider the linear map \(\varphi : C(X) \to \ell^\infty(\mathbb{N}) \) defined by \(\varphi(f) = (\int_X f \, d\mu_n)_n \). What conditions on the sequence \(\{\mu_n\} \) are equivalent to \(\varphi \) being an isometry? Provide justification.

7. Let \(X \) be a compact metric space and \(\{f_n\} \) a sequence in \(C(X) \). Prove that \(\{f_n\} \) converges weakly in \(C(X) \) if and only if it converges pointwise and \(\sup_n \|f_n\| < \infty \). Also, give an example of an \(X \) and a sequence \(\{f_n\} \) in \(C(X) \) which converges weakly but not uniformly.

8. Let \(X \) be a Banach space. Show that if \(X^{**} \) is separable then so is \(X \). Also, give an example, with justification, to show that the converse is false.

9. (a) Let \(X \) be a compact metrizable space. Describe the dual of \(C(X) \) according to the Riesz representation theorem.

(b) Consider the spaces \(X = \{1/n : n \in \mathbb{N}\} \cup \{0\} \) and \(Y = [0,1] \) with the topologies inherited from \(\mathbb{R} \). Prove that there does not exist a bijective bounded linear map from \(C(X) \) to \(C(Y) \).

10. Let \(X \) be a Banach space and \(Y \) a subspace of \(X \). Show that \(\|x + Y\| = \inf\{\|x + y\| : y \in Y\} \) defines a norm on \(X/Y \) if and only if \(Y \) is closed.