Qualifying Examination in Real Variables, January 2020

General Instructions:

- (1) Use a separate sheet of paper for each problem.
- (2) Unless stated otherwise, you may use results from Folland's book, but you need to state them carefully (if you do not remember their names you can state them).

Problems:

(1) Show that

$$\lim_{n \to \infty} \int_0^\infty \frac{4t^3 + 12}{12t^6 + 3nt + 2} dt = 0.$$

(2) Show for all $f \in L_1(\mathbb{R})$ that

$$\lim_{\delta \to 1} \int |f(\delta x) - f(x)| \, dx = 0.$$

(3) For an integrable function $f \in L_1(\mathbb{R})$, and $\alpha \ge 0$ put

$$E_{\alpha} = \{ x \in \mathbb{R} : |f(x)| \ge \alpha \}.$$

Show that the map $\alpha \mapsto m(E_{\alpha})$ is measurable and that

$$\int_{-\infty}^{\infty} |f(x)| \, dx = \int_{0}^{\infty} m(E_{\alpha}) \, d\alpha.$$

- (4) Let $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Using the inequality $a^{\lambda}b^{1-\lambda} \leq \lambda a + (1-\lambda)b$, for $0 < \lambda < 1$ and $0 \leq a, b$. prove the Hölder inequality.
- (5) Show that for $\epsilon > 0$ there is a closed subset $E \subset [0, 1]$ with empty interior, of Lebesgue measure at least 1ϵ .
- (6) Let X be a Banach space and Y a non trivial closed subspace of X.

(a) Show that for all $y^* \in Y^*$ (the dual of Y) the set

 $\left\{x^* \in X^* : \|x^*\| = \|y^*\| \text{ and } x^*|_Y = y^*\right\}$

is weak^{*}-compact.

(b) Show that every extreme point of the closed unit ball of Y^* extends to an extreme point of the unit ball of X^* .

- (7) Assume that $(X, \|\cdot\|)$ is a normed linear space and that Y is a subspace of X. Assume that $\|\cdot\|$ is a norm on Y which is equivalent to $\|\cdot\|$. Proof that $\|\cdot\|$ can be extended to an equivalent norm on all of X.
- (8) Let (f_n) be a sequence of continuous functions on [0, 1], such that for each $x \in [0, 1]$ there is an $n_x \in \mathbb{N}$, so that $f_n(x) \ge 0$ for all $n \ge n_x$. Show that there are an $N \in \mathbb{N}$ and an open perpendicular interval.

Show that there are an $N \in \mathbb{N}$ and an open nonempty interval $I \subset [0, 1]$, so that $f_n(x) \ge 0$ for all $n \ge N$ and $x \in I$.

(9) For a bounded sequence $(f_n) \subset C[0, 1]$, show that

 $f_n \to_{n\to\infty} 0$, weakly $\iff f_n(x) \to_{n\to\infty} 0$ for all $x \in [0,1]$.

- (10) On the set $[0, \infty]$ consider the topology \mathcal{T} generated by the open sets (in the usual topology) of $[0, \infty)$ and the sets of the form $[0, \infty] \setminus C$, with $C \subset [0, \infty)$ compact.
 - (a) Show that $[0, \infty]$ with above defined topology is a compact space.
 - (b) Show that $[0, \infty]$ with above defined topology is metrizable. Hint: consider a continuous, strictly increasing, and bounded function $f: [0, \infty) \to [0, \infty)$.
 - (c) Show that the linear space generated by the functions of the form e^{-nx^2} , n = 1, 2, 3..., is dense (with respect to supnorm) in the space of all continuous functions $f : [0, \infty] \to \mathbb{R}$, having the property that $f(\infty) = 0$.