QUALIFYING EXAM-REAL ANALYSIS JANUARY 2023

The 10 problems below are equally weighted. Solve as many problems or portions thereof as you can in 4 hours. Please start the solution of each problem you attempt on a new sheet in your bluebook.

In the sequel, unless specified otherwise, \mathbb{R} (or a subset of it) is always equipped with the Borel σ -algebra and the Lebesgue measure (denoted by λ).

Problem 1.

Show that there exists a constant c > 0 (and give its value) so that for every measurable function $f : \mathbb{R} \to [0, \infty)$ we have

$$\int_{\mathbb{R}} f^4 d\lambda = c \int_{[0,\infty)} t^3 \lambda(\{f \ge t\}) d\lambda(t).$$

Problem 2.

Let (X, \mathcal{M}, μ) be a measure space. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of integrable functions from X to \mathbb{R} such that $\lim_{n\to\infty} \int_X |f_n - f| d\mu = 0$ for some integrable function $f: X \to \mathbb{R}$. Show that for all $\varepsilon > 0$ there is $A \in \mathcal{M}$ satisfying $\mu(A) < \infty$ and for all $n \ge 1$,

$$\int_{X\setminus A} |f_n| d\mu < \varepsilon.$$

Problem 3.

Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of measurable functions from [0, 1] to \mathbb{R} .

- (1) Show that if $\lim_{n\to\infty} \int_{[0,1]} |f_n f| d\lambda = 0$ for some integrable function $f: [0,1] \to \mathbb{R}$, then $(f_n)_{n\in\mathbb{N}}$ converges in λ -measure to f.
- (2) Show that if $(f_n)_{n \in \mathbb{N}}$ converges λ -almost everywhere towards a measurable function $f : [0,1] \to \mathbb{R}$, then $(f_n)_{n \in \mathbb{N}}$ converges in λ -measure to f.
- (3) Does the conclusion in assertion (2) still hold if the functions are defined on \mathbb{R} instead?

Problem 4.

Recall that a collection \mathcal{F} *of measurable functions from* [0,1] *to* \mathbb{R} *is said to be* uniformly integrable *if*

$$\lim_{\lambda(A)\to 0} \sup_{f\in\mathscr{F}} \int_A |f| d\lambda = 0.$$

- (1) Given a non-negative $g \in L_1([0,1])$, show that $\mathscr{F}_g \stackrel{\text{def}}{=} \{f \in L_1([0,1]) \colon |f| \leq g\}$ is uniformly integrable.
- (2) Show that the closed unit ball of $L_2([0,1])$ is a uniformly integrable subset of $L_1([0,1])$.

Problem 5.

- (1) Show that a compact metric space is separable.
- (2) Prove or disprove that the unit ball of ℓ_{∞} equipped with the norm topology is separable.
- (3) Prove or disprove that the unit ball of ℓ_{∞} equipped with the weak*-topology is separable.

Problem 6.

Consider the Banach space C[0,1] consisting of all continuous, real valued functions on [0,1], endowed with the uniform norm, $\|\cdot\|_{\infty}$. For $f \in C[0,1]$, let

$$||f||_{L} = |f(0)| + \sup_{0 \le x < y \le 1} \frac{|f(y) - f(x)|}{y - x}$$

- (1) Show that $\{f \in C[0,1] \mid ||f||_L \leq 1\}$ is compact in C[0,1].
- (2) Is the set $\{f \in C[0,1] \mid ||f||_L < \infty\}$ dense in C[0,1] or not? Justify your answer.

Problem 7.

Suppose X is a real Banach space and $Y \subseteq X$ is a proper subspace. Show that the following are equivalent:

- (1) For every $z \in X$ such that $z \notin Y$, there exists a bounded linear functional ϕ on X such that $\phi(z) = 1$ and, for all $y \in Y$, $\phi(y) = 0$.
- (2) Y is closed in X.

Problem 8.

- (1) Let X be a normed vector space and Y be a subspace of X. Show that if Y has non-empty interior then Y = X.
- (2) Let X be a Banach space and T be a bounded operator on X. Show that if for all $x \in X$, there exists $n \in \mathbb{N}$ such that $T^n(x) = 0$, then there exists $d \in \mathbb{N}$ such that for all $x \in X$, $T^d(x) = 0$.

Problem 9.

Let $(X, \|\cdot\|)$ be a normed vector space. A sequence $(x_n)_{n \in \mathbb{N}}$ in X is said to be weakly Cauchy if for all $x^* \in X^*$, $(x^*(x_n))_{n \in \mathbb{N}}$ is a Cauchy sequence.

- (1) Show that a weakly Cauchy sequence $(x_n)_{n \in \mathbb{N}}$ in X is bounded.
- (2) Show that for every weakly Cauchy sequence $(x_n)_{n \in \mathbb{N}}$ in X, there exists $x^{**} \in X^{**}$ such that $(x_n)_{n \in \mathbb{N}}$ weak*-converges to x^{**} and $||x^{**}|| \leq \liminf_{n \to \infty} ||x_n||$.

Problem 10.

Let $(g_n)_{n\in\mathbb{N}}$ be a sequence of non-negative continuous functions on [0,1] such that for each $k \in \mathbb{N} \cup \{0\}$, the limit $\lim_{n\to\infty} \int_{[0,1]} t^k g_n(t) d\lambda(t)$ exists. Show that there exists a unique finite positive Radon measure μ on [0,1] such that for all continuous functions on [0,1], $\int_{[0,1]} f d\mu = \lim_{n\to\infty} \int_{[0,1]} f(t)g_n(t)d\lambda(t)$.