14 August 2010

Notation. Let \mathbb{R}^n denote real *n*-space. Employ the summation convention: any repeated index appearing as a subscript and superscript is summed over.

Show your work.

1.) Let C be a subset of a topological space X.

(a) Prove that if C is connected, then the closure of C is connected.

(b) Prove or give a counter-example to the following statement: if C is connected, then the interior of C is connected.

- 2.) Prove that a countable product of separable spaces is separable.
- (a) Is the set of rational numbers Q (as a subspace of ℝ) locally compact? Prove your answer.

(b) Prove that if a topological space X is locally compact, Hausdorff, and second countable, then it is metrizable.

- 4.) Let $f: X \to Y$ be a continuous map between topological spaces X and Y.
 - (a) Define what it means for f to be a quotient (an identification) map.

(b) Prove that if the map $f: X \to Y$ is open and onto, then f is a quotient map.

(c) Let C be the union of the x-axis and the y-axis of \mathbb{R}^2 and define $g : \mathbb{R}^2 \to C$ as follows:

$$g(x,y) = \begin{cases} (x,0) & \text{if } x \neq 0\\ (0,y) & \text{if } x = 0 \end{cases}$$

Does the quotient topology on C induced by g coincide with the subspace topology on C induced from the standard topology of \mathbb{R}^2 ? Prove your answer.

5.) (a) Give the definition of a paracompact space.

(b) Using the definition of paracompactness only, prove that \mathbb{R}^n (with the standard topology) is paracompact.

(c) Give an example to show that if X is paracompact, it does not follow that for every open covering of \mathcal{A} of X there is locally finite *subcollection* of \mathcal{A} that covers X.

6.) Let $\{K_{\alpha}\}_{\alpha \in A}$ be a collection of compact subsets of a Hausdorff space X which is closed with respect to finite intersections. Let $K = \bigcap K_{\alpha}$.

(a) Suppose that W is an open subset of X such that $K \subset W$. Prove that $K_{\alpha} \subset W$ for some $\alpha \in A$.

- (b) Prove that if K_{α} is connected for each $\alpha \in A$, then K is connected.
- 7.) (a) State the definition of a smooth *n*-dimensional manifold.
 - (b) Define $F : \mathbb{R}^3 \to \mathbb{R}^1$ by $F(x, y, z) = x \cos(z) + y \sin(z)$. Prove that the level set $F^{-1}(0)$ is a smooth 2-dimensional manifold.
- 8.) Let X_1, \ldots, X_m be linearly independent vector fields on \mathbb{R}^n , $m \leq n$. Fix the index ranges

$$1 \le a, b \le m$$
$$1 \le i, j \le n$$
$$m+1 \le s, t \le n$$

Prove the following.

(a) For every $p \in \mathbb{R}^n$ there exists an open set $U \subset \mathbb{R}^n$ containing p and linearly independent 1-forms η^1, \ldots, η^n on U with the property that $\eta^i(X_a) = \delta_a^i$. Here δ_a^i is the Kronecker delta.

(b) Prove that $[X_a, X_b] \subset \operatorname{span}_{\mathbb{R}} \{X_1, \ldots, X_m\}$ if and only if there exist 1-forms α_t^s on U such that $d\eta^s = \alpha_t^s \wedge \eta^t$, for all $m + 1 \leq s \leq n$.

9.) Let $Z = \mathbb{R}^{n+1} \setminus \{0\}$. Define an equivalence relation \sim on U by

 $x \sim y$ if and only if there exists $\lambda \neq 0$ such that $y = \lambda x$.

Recall that projective *n*-space is the manifold $\mathbb{P}^n = Z/\sim$. Given $x = (x^0, \ldots, x^n) \in Z$, let $[x] = [x^0 : \cdots : x^n] \in \mathbb{P}^n$ denote the corresponding equivalence class. Fix $p = [1:0] \in \mathbb{P}^1$ and $q = [1:0:0:0] \in \mathbb{P}^3$.

(a) Describe a coordinate chart (U, φ) about p, and coordinate chart (V, ψ) about q.

(b) Let $\nu : \mathbb{P}^1 \to \mathbb{P}^3$ be the Veronese map $\nu([s:t]) = [s^3 : s^2t : st^2 : t^3]$. Give the local coordinate expression of ν with respect to the coordinates (U, φ) and (V, ψ) .

(c) Express the push-forward $\nu_*: T_p \mathbb{P}^1 \to T_q \mathbb{P}^3$ in terms of the local coordinates.

(d) Express the pull-back $\nu^*: T^*_{\mathfrak{g}} \mathbb{P}^3 \to T^*_{\mathfrak{p}} \mathbb{P}^1$ in terms of the local coordinates.

10.) Consider a unit speed curve $C : t \mapsto (\alpha(t), 0, \beta(t))$ in \mathbb{R}^3 with $\alpha(t) > 0$. Let S be the surface of revolution obtained by rotating C about the z-axis. The $(\alpha(t), \beta(t))$ for which S is of constant Gauss curvature K = -1 are characterized by an ordinary differential equation. Identify that equation.