Topology/Geometry Qualifying Exam

(August 2012)

Instructions:

- i. You must work on every problem and prove your assertions.
- ii. Start each problem on a separate sheet of paper.
- iii. Once you finish the exam, assemble your answers according to the problem numbers.
 - (1) Let Y be a set and consider two collections of functions

$$\mathcal{F} = \{ f_{\alpha} \colon X_{\alpha} \to Y \mid \alpha \in \Lambda \} \text{ and } \mathcal{G} = \{ g_{\alpha} \colon Y \to X_{\alpha} \mid \alpha \in \Lambda \},$$

where the X_{α} 's are topological spaces.

- (a) Show that Y has a unique finest topology $Y_{\mathcal{F}}$ so that $f_{\alpha} \in \mathcal{F}$ is continuous for all $\alpha \in \Lambda$. Show that a function $F: Y_{\mathcal{F}} \to Z$ is continuous if and only if $F \circ f_{\alpha}$ is continuous for all $\alpha \in \Lambda$.
- (b) Show that Y has a unique coarsest topology $Y_{\mathcal{G}}$ so that $g_{\alpha} \in \mathcal{G}$ is continuous for all $\alpha \in \Lambda$. Show that a function $G: Z \to Y_{\mathcal{G}}$ is continuous if and only if $g_{\alpha} \circ G$ is continuous for each $\alpha \in \Lambda$.
- (2) Given $\alpha \in \mathbb{R}$ denote $L_{\alpha} = \{(r, \alpha r) \mid r \in \mathbb{Q}\} \subset \mathbb{R}^2$, where \mathbb{Q} denotes the rational numbers. Define $S_{irr} = \bigcup_{\alpha \in \mathbb{R} - \mathbb{Q}} L_{\alpha}$ and give $X = \mathbb{R}^2 - S_{irr} \subset \mathbb{R}^2$ the subspace topology.
 - (a) Show that X is connected and locally path-connected.
 - (b) Is X paracompact? Explain.
 - (c) Is X locally compact? Explain.
- (3) Let $S^n = {\mathbf{x} \in \mathbb{R}^{n+1} \mid ||\mathbf{x}|| = 1}$ and $B^{n+1} = {\mathbf{x} \in \mathbb{R}^{n+1} \mid ||\mathbf{x}|| \le 1}$ denote the unit sphere and unit closed ball in \mathbb{R}^n , respectively. Show that one can define an equivalence relation \sim on $X = S^n \times [0, \infty)$ so that the quotient space X/\sim is homeomorphic to the ball B^{n+1} .
- (4) Suppose that X is a T_1 topological space which is also *normal*, and that $X = U \cup V$, where U and V are open in X. Show that one can find open subsets U_1, V_1 satisfying

$$\overline{U_1} \subset U, \quad \overline{V_1} \subset V \quad \text{and} \quad X = U_1 \cup V_1$$

- (5) Let $\mathbb{Z}/n\mathbb{Z}$ denote the set of congruence classes of integers mod n, endowed with the discrete topology, and give the cartesian product $X = \prod_{n \geq 2} \mathbb{Z}/n\mathbb{Z}$ the product topology. Denote by $[x]_n$ the congruence class of $x \in \mathbb{Z}$ modulo n.
 - (a) Fix $k \in \mathbb{Z}$ and let $F_k \subset X$ denote the set of elements $\mathbf{x} = ([x_n]_n)_{n \geq 2} \in X$ such that $[x_n]_n$ is a multiple of $[k]_n$ for all n > k. Show that F_k is a closed subset of X.
 - (b) Let $B \subset X$ be a non-empty closed subset such that $B \cap F_2 = \emptyset$. Show that there is a continuous function $f: X \to [0, 1]$ such that f(x) = 0 if $x \in B$ and f(x) = 1 if $x \in F_2$.

(6) Let $X \subset \mathbb{C}^n$ denote the subspace given by the equations

 $z_1^2 + z_2^2 + \dots + z_n^2 = 0$ and $|z_1|^2 + |z_2|^2 + \dots + |z_n|^2 = 2$,

where |z| denotes the norm of a complex number. Let $Gr_2(\mathbb{R}^n)$ denote the Grassman manifold of 2-planes in \mathbb{R}^n .

- (a) Show that X is a smooth, compact submanifold of \mathbb{C}^n and determine its dimension.
- (b) Write $\mathbf{z} = \mathbf{x} + \sqrt{-1} \mathbf{y} \in \mathbb{C}^n$, where \mathbf{x} and $\mathbf{y} \in \mathbb{R}^n$ are the real and imaginary parts of \mathbf{z} , respectively. Show that the map $\psi \colon X \to Gr_2(\mathbb{R}^n)$ sending $\mathbf{z} \in X$ defined by $\psi(\mathbf{z}) = Span_{\mathbb{R}}(\mathbf{x}, \mathbf{y})$ is a smooth, surjective map.
 - Here, $Span_{\mathbb{R}}(\mathbf{x}, \mathbf{y})$ denotes the linear span in \mathbb{R}^n of the vectors \mathbf{x} and \mathbf{y} .
- (7) Let M be a smooth manifold and let α be a smooth section of its cotangent bundle. For $x \in M$, let

$$\alpha_x^{\perp} := \{ v \in T_x M \mid \alpha(v) = 0 \}$$

and let $\alpha^{\perp} := \bigcup_{x \in M} \alpha_x^{\perp}$. Show that α^{\perp} is a sub-vector bundle of the tangent bundle TM if and only if α is a non-vanishing section of the cotangent bundle. You may use the fact that TM is a vector bundle.

- (8) Let M be a smooth manifold and let $\alpha \in \Omega^1(M)$ be a non-vanishing section. Consider the following statements:
 - (a) There exists a function $f \in C^{\infty}(M)$, such that $\alpha = df$.
 - (b) Through each $x \in M$ there exists a hypersurface $Z_x \subset M$, such that $\alpha^{\perp}|_{Z_x} = TZ_x$.
 - (c) For all $X, Y \in \Gamma(\alpha^{\perp})$, i.e., X, Y are sections of the vector bundle α^{\perp} , [X, Y] = 0.
 - (d) For all $X, Y \in \Gamma(\alpha^{\perp}), [X, Y] \in \Gamma(\alpha^{\perp}).$

Determine the implications among them (e.g. (x) implies (y) because ...).

- (9) Let R³ have coordinates (x, y, z). Which of the following are Riemannian metrics on R³:
 (a) g = (x + y)dx ∘ dx + (y + z)dy ∘ dy + (z + x)dz ∘ dz.
 - (b) $q = 13dx \circ dx + 2dx \circ dy + 44dy \circ dy + dz \circ dz$.
 - (c) $q = dx \circ dx + dy \circ dy$.

Here \circ denotes the symmetric tensor product.

(10) Compute the Gauss and mean curvature functions for a sphere of radius 5 in Euclidean three space.