TEXAS A\&M UNIVERSITY
 TOPOLOGY/GEOMETRY QUALIFYING EXAM
 AUGUST 2014

INSTRUCTIONS:.

- There are 8 problems. Work on all of them.
- Prove your assertions.
- Use a separate sheet of paper for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.

Problem 1. Let X be a compact Hausdorff space.
(a) Let $n \geq 1$ and

$$
\left\{f_{i}: X \rightarrow \mathbf{R} \mid i=1, \ldots, n\right\}
$$

be a finite family of continuous functions such that, for each pair of distinct points $x, y \in X$, there exists $i, 1 \leq i \leq n$, with $f_{i}(x) \neq f_{i}(y)$. Show that X is homeomorphic to a subspace of \mathbf{R}^{n}.
(b) Let $f: X \rightarrow X$ be an injective continuous function. Show that there exists a nonempty closed subset A of X such that $f(A)=A$.

Problem 2. Let X be a topological space. Show that the intersection of any two dense open subsets of X is also dense.

Problem 3. Let X be a locally compact space and let A be a subset of X such that, for every compact subset K of X, the intersection $A \cap K$ is a closed subset of X. Show that A is a closed subset of X.

Problem 4. Consider the equivalence relation \sim on $I=[0,1]$ given by

$$
x \sim y \Longleftrightarrow x=y \text { or } 1 / 3<x, y<2 / 3
$$

and the quotient space $X=I / \sim$. Prove or disprove each of the following
(a) X is Hausdorff.
(b) X is connected.
(c) X is compact.

Problem 5. In \mathbf{R}^{3}, set
$X_{1}=x_{1}^{2} x_{2} \frac{\partial}{\partial x_{2}}-x_{1} \frac{\partial}{\partial x_{3}}, \quad X_{2}=2 x_{1} \frac{\partial}{\partial x_{2}}, \quad \omega=x_{3} d x_{1} \wedge d x_{2}+x_{2}^{2} d x_{1} \wedge d x_{3}$.
(a) Compute $\left[X_{1}, X_{2}\right]$.
(b) Compute $\omega\left(X_{1}, X_{2}\right)$.
(c) Compute $\omega \wedge\left(x_{2} d x_{2}\right)$.
(d) Compute d ω.
(e) Prove that for any point $p \in \mathbf{R}^{3}$ there are no neighborhood U and coordinate functions y_{1}, y_{2}, y_{3} on U such that $X_{1}=\frac{\partial}{\partial y_{1}}$ and $X_{2}=\frac{\partial}{\partial y_{2}}$.
(f) On the set $M:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3}: x_{1} \neq 0\right\}$ define the distribution $D=$ $\operatorname{span}\left(X_{1}, X_{2}\right)$. Prove that for any point $p \in M$ there exist a neighborhood U, coordinate functions $\left(y^{1}, y^{2}, y^{3}\right)$ on U, and vector fields Y_{1} and Y_{2} on U such that $D=\operatorname{span}\left(Y_{1}, Y_{2}\right)$ and $Y_{i}=\frac{\partial}{\partial y_{i}}, i=1,2$. Give an example of such vector fields Y_{1}, Y_{2} (in the original coordinates $\left(x_{1}, x_{2}, x_{3}\right)$).

Problem 6. Define $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ by $f(x, y, z)=\left(x^{2}+y^{2}, y z\right)$. Let (u, v) denote standard coordinates in \mathbf{R}^{2}.
(a) Calculate $f^{*}(u d v+v d u)$.
(b) Calculate $f_{*}\left(\left.\frac{\partial}{\partial y}\right|_{(10,-5,-1)}\right)$.
(c) Find all regular values of f.
(d) Find all (a, b) in \mathbf{R}^{2} such that the set $f^{-1}(a, b)$ is a nonempty embedded submanifold of \mathbf{R}^{3}.

Problem 7. Suppose M is a smooth n-dimensional manifold and D is a smooth rank k distribution on M. Recall that a p-form η annihilates D if $\eta\left(X_{1}, \ldots, X_{p}\right)=0$ whenever X_{1}, \ldots, X_{p} are local sections of D. Let $\omega^{1}, \ldots, \omega^{n-k}$ be smooth local defining forms for D over an open subset $U \subseteq M$, i.e. $D_{q}=\left.\operatorname{Ker} \omega^{1}\right|_{q} \cap \ldots \cap$ $\left.\operatorname{Ker} \omega^{n-k}\right|_{q} \quad \forall q \in U$. Prove that a smooth p-form η defined on U annihilates D if and only if it can be expressed in the form

$$
\eta=\sum_{i=1}^{n-k} \omega^{i} \wedge \beta^{i}
$$

for some smooth $(p-1)$-forms $\beta^{1}, \ldots, \beta^{n-k}$ on U.

Problem 8. Assume that for any $p=(x, y) \in \mathbf{R}^{2}$ the inner product $\langle\cdot, \cdot\rangle_{p}$ is given as follows: if $v_{1}, v_{2} \in T_{p} \mathbf{R}^{2}$, then $\left\langle v_{1}, v_{2}\right\rangle=\lambda(p)\left(v_{1} \cdot v_{2}\right)$, where $v_{1} \cdot v_{2}$ is the standard inner product in \mathbf{R}^{2} and $\lambda: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is a smooth positive function. Prove that the Gaussian curvature K of the corresponding Riemannian metric is given by $K=-\frac{1}{2 \lambda} \Delta(\log (\lambda))$, where Δ is the Laplacian, $\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}$.

