TEXAS A\&M UNIVERSITY TOPOLOGY/GEOMETRY QUALIFYING EXAM AUGUST 2015

INSTRUCTIONS:.

- There are 8 problems. Work on all of them.
- Prove your assertions.
- Use a separate sheet of paper for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.

Problem 1. Let X be the interval $[0,1]$ with the following topology. A subset U of X is open if and only if it contains the interval $(0,1)$ or it does not contain the point $1 / 2$.
(a) Is the topology on X smaller (coarser) than, larger (finer) than, or not comparable to the the standard topology on the unit interval? Please justify your answer.
(b) Determine the closure of the set $\{1 / 4\}$ in X. Please justify your answer.
(c) Show that X is a T_{0} space, but it is not a T_{1} space.

Problem 2. Let X be a compact space, $\left\{C_{j} \mid j \in J\right\}$ a nonempty family of closed sets in $X, C=\bigcap_{j \in J} C_{j}$, and U an open set in X containing C. Show that there exists a finite subset $\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}$ of J such that

$$
C_{j_{1}} \cap C_{j_{2}} \cap \cdots \cap C_{j_{n}} \subseteq U
$$

Problem 3. Let X and Y be topological spaces, and $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be two maps such that, for all $y \in Y, f(g(y))=y$. Show that if Y is connected and $f^{-1}(y)$ is connected for all $y \in Y$, then X is connected.

Problem 4. Let (X, d) be a compact metric space and $f: X \rightarrow X$ be a distance preserving map (a map such that, for all $x, y \in X, d(f(x), f(y))=d(x, y))$.
(a) Show that f is injective.
(b) Show that, for every point $x \in X$ and every ε-ball $B_{\varepsilon}(x)$ centered at x, one of the balls in the sequence

$$
f\left(B_{\varepsilon}(x)\right), f\left(f\left(B_{\varepsilon}(x)\right)\right), f\left(f\left(f\left(B_{\varepsilon}(x)\right)\right)\right), \ldots
$$

has nonempty intersection with $B_{\varepsilon}(x)$.
(c) Use part (b), or any other method, to prove that f is surjective.

Problem 5. Let V be a real vector space of dimension $n+1$. Define an equivalence relation on $V \backslash\{0\}$ by $u \sim v$ if $u=\lambda v$ for some nonzero $\lambda \in \mathbb{R}$. Let $\mathbb{P}(V)=$ $(V \backslash\{0\}) / \sim$ denote the quotient space, equipped with the quotient topology. Prove that $\mathbb{P}(V)$ is a smooth manifold of dimension n.

Problem 6. Let $M=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ be the upper half-plane. Let $u \cdot v$ denote the dot product of vectors $u, v \in \mathbb{R}^{2}$. Use the natural identification $T_{(x, y)} M \simeq \mathbb{R}^{2}$ to define a metric g on M by

$$
g_{(x, y)}(u, v):=\frac{u \cdot v}{y^{2}} \quad \text { for all } u, v \in T_{(x, y)} M
$$

Compute the Gauss curvature of M.

Problem 7. Prove that the distribution \mathcal{D} on \mathbb{R}^{3} spanned by the vector fields

$$
\begin{aligned}
X & =\left(1+z^{2}\right) \frac{\partial}{\partial z} \\
Y & =\frac{\partial}{\partial x}-\frac{\partial}{\partial y}+4(y-x) \frac{\partial}{\partial z}
\end{aligned}
$$

is involutive. Find flat coordinates for the distribution; that is, find coordinates (u, v, w) on \mathbb{R}^{3} so that \mathcal{D} is spanned by $\left\{\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right\}$.

Problem 8. For what values of $c \in \mathbb{R}$ is $\{x y z=c\} \subset \mathbb{R}^{3}$ a smooth, embedded submanifold? What are the dimensions of these manifolds?

