TEXAS A&M UNIVERSITY TOPOLOGY/GEOMETRY QUALIFYING EXAM AUGUST 2015

INSTRUCTIONS:.

- There are 8 problems. Work on all of them.
- Prove your assertions.
- Use a separate sheet of paper for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.

Problem 1. Let X be the interval [0,1] with the following topology. A subset U of X is open if and only if it contains the interval (0,1) or it does not contain the point 1/2.

- (a) Is the topology on X smaller (coarser) than, larger (finer) than, or not comparable to the the standard topology on the unit interval? Please justify your answer.
- (b) Determine the closure of the set $\{1/4\}$ in X. Please justify your answer.
- (c) Show that X is a T_0 space, but it is not a T_1 space.

Problem 2. Let X be a compact space, $\{C_j \mid j \in J\}$ a nonempty family of closed sets in X, $C = \bigcap_{j \in J} C_j$, and U an open set in X containing C. Show that there exists a finite subset $\{j_1, j_2, \ldots, j_n\}$ of J such that

$$C_{j_1} \cap C_{j_2} \cap \dots \cap C_{j_n} \subseteq U.$$

Problem 3. Let X and Y be topological spaces, and $f: X \to Y$ and $g: Y \to X$ be two maps such that, for all $y \in Y$, f(g(y)) = y. Show that if Y is connected and $f^{-1}(y)$ is connected for all $y \in Y$, then X is connected.

Problem 4. Let (X, d) be a compact metric space and $f : X \to X$ be a distance preserving map (a map such that, for all $x, y \in X$, d(f(x), f(y)) = d(x, y)). (a) Show that f is injective.

(b) Show that, for every point $x \in X$ and every ε -ball $B_{\varepsilon}(x)$ centered at x, one of the balls in the sequence

$$f(B_{\varepsilon}(x)), f(f(B_{\varepsilon}(x))), f(f(f(B_{\varepsilon}(x)))), \ldots$$

has nonempty intersection with $B_{\varepsilon}(x)$.

(c) Use part (b), or any other method, to prove that f is surjective.

Problem 5. Let V be a real vector space of dimension n+1. Define an equivalence relation on $V \setminus \{0\}$ by $u \sim v$ if $u = \lambda v$ for some nonzero $\lambda \in \mathbb{R}$. Let $\mathbb{P}(V) = (V \setminus \{0\}) / \sim$ denote the quotient space, equipped with the quotient topology. Prove that $\mathbb{P}(V)$ is a smooth manifold of dimension n.

Problem 6. Let $M = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$ be the upper half-plane. Let $u \cdot v$ denote the dot product of vectors $u, v \in \mathbb{R}^2$. Use the natural identification $T_{(x,y)}M \simeq \mathbb{R}^2$ to define a metric g on M by

$$g_{(x,y)}(u,v) := \frac{u \cdot v}{y^2} \text{ for all } u, v \in T_{(x,y)}M$$

Compute the Gauss curvature of M.

Problem 7. Prove that the distribution \mathcal{D} on \mathbb{R}^3 spanned by the vector fields

$$X = (1+z^2)\frac{\partial}{\partial z},$$

$$Y = \frac{\partial}{\partial x} - \frac{\partial}{\partial y} + 4(y-x)\frac{\partial}{\partial z}$$

is involutive. Find flat coordinates for the distribution; that is, find coordinates (u, v, w) on \mathbb{R}^3 so that \mathcal{D} is spanned by $\{\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\}$.

Problem 8. For what values of $c \in \mathbb{R}$ is $\{xyz = c\} \subset \mathbb{R}^3$ a smooth, embedded submanifold? What are the dimensions of these manifolds?