Topology/Geometry Qualifying Exam - August 2018

Answer all questions. Write your name and page number in the upper right corner of each page. Start each problem on a new sheet of paper, and use only one side of each sheet.

1. (a) Let $X=\mathbb{N}_{+}=\{1,2,3, \cdots\}$ and $Y=\left\{1 / n \mid n \in \mathbb{N}_{+}\right\}$be equipped with the subspace topology from \mathbb{R}. Here \mathbb{R} is the set of real numbers. Prove that X and Y are homeomorphic.
(b) Let $A=\mathbb{N}=\{0,1,2,3, \cdots\}$ and $B=\left\{1 / n \mid n \in \mathbb{N}_{+}\right\} \cup\{0\}$ be equipped with the subspace topology from \mathbb{R}. Prove that A and B are not homeomorphic.
2. Write down explicitly the fundamental groups of $S^{2} \times S^{1}$ and $T^{3}=S^{1} \times S^{1} \times S^{1}$. Let X be the connected sum of $S^{2} \times S^{1}$ and T^{3}. Compute the fundamental group of X.
3. Let X be a locally compact Hausdorff space. A continuous function f on X is said to vanish at infinity if the following condition is satisfied: for $\forall \varepsilon>0$, there exists a compact subset $K \subset X$ such that $|f(x)|<\varepsilon$ for all $x \in X \backslash K$.
Show that a continuous function f on X extends to a continuous function on X^{+}the one-point-compactification of X if and only if there exists a $\lambda \in \mathbb{R}$ such that $f-\lambda$ vanishes at infinity.
4. (a) Prove that S^{2} does not admit a continuous tangent vector field that is nonwhere vanishing.
(b) Construct a continuous tangent vector field of S^{3} that is nowhere vanishing.
(c) Show that there exists a nowhere vanishing a continuous tangent vector field on the 3-dimensional real projective plane $\mathbb{R P}^{3}$.
5. Let M be the open first quadrant of \mathbb{R}^{2} and let $F: M \rightarrow M$ be the map $F(x, y)=$ $(x y, y / x)$.
(1) Show that F is a diffeomorphism.
(2) Compute the push-forward $F_{*}(X)$, where

$$
X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}
$$

6. Let

$$
X=\frac{\partial}{\partial x}+y z \frac{\partial}{\partial z} \quad \text { and } \quad Y=\frac{\partial}{\partial y}
$$

be two vector fields on \mathbb{R}^{3}. Let D be the distribution spanned by X and Y.
(1) Find an integral sub-manifold of D passing through the origin.
(2) Compute the Lie bracket $[X, Y]$ of X and Y.
(3) Is the distribution D integrable?
7. Show that the differential 1-form

$$
\frac{y}{x^{2}+y^{2}} d x-\frac{x}{x^{2}+y^{2}} d y
$$

on $\mathbb{R}^{2} \backslash\{0\}$ is closed but not exact.
8. (a) Consider the de Rham complex of \mathbb{R} :

$$
0 \rightarrow \Omega^{0}(\mathbb{R}) \rightarrow \Omega^{1}(\mathbb{R}) \rightarrow 0
$$

Prove that $H^{0}(\mathbb{R})=\mathbb{R}$ and $H^{1}(\mathbb{R})=0$.
(b) Consider the de Rham complex with compact support of \mathbb{R} :

$$
0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \rightarrow \Omega_{c}^{1}(\mathbb{R}) \rightarrow 0
$$

Prove that $H_{c}^{0}(\mathbb{R})=0$ and $H_{c}^{1}(\mathbb{R})=\mathbb{R}$.

