• There are 10 problems. Work on all of them and prove your assertions.

• Use a separate sheet of paper for each problem and write only on one side of the paper.

• Write your name on the top right corner of each page.

1. Let X be a compact metric space. Show that if $f : X \rightarrow X$ satisfies $d(f(x), f(y)) = d(x, y)$ for all $x, y \in X$ (i.e., if f is an isometry) then f is a homeomorphism.

2. Prove that the metric space X is complete if and only if for every sequence $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots$ of nonempty closed subsets of X such that diameters of A_n converge to 0, the intersection $\bigcap_{i=1}^{\infty} A_i$ is non-empty.

3. Let X_i, for $i \in I$, be a family of topological spaces, and let $A_i \subset X_i$ be subsets. Show that $\prod_{i \in I} A_i = \prod_{i \in I} \overline{A_i}$, where closure on the left-hand side of the equality is taken with respect to the product topology on $\prod_{i \in I} X_i$.

4. Let X and Y be topological spaces, where Y is compact. Let $p : X \times Y \rightarrow X$ be the projection onto the first factor. Show that p is closed (i.e., maps each closed subset of $X \times Y$ to a closed subset of X).

5. Show that any map $f : S^1 \rightarrow S^1$ of degree 1 is homotopic to the identity.

6. (a) Given a differential p-form ω on a manifold N and a smooth map $g : M \rightarrow N$ give the definition of the pull-back $g^* \omega$ of the form ω by the map g.

(b) Define $g : \{(u,v) \in \mathbb{R}^2 : u^2 + v^2 < 1\} \rightarrow \mathbb{R}^3 \setminus \{0\}$ by $(x, y, z) = g(u, v) = (u, v, \sqrt{1-u^2-v^2})$ and

$$\omega = \frac{x dy \wedge dz + ydz \wedge dx + z dx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}.$$

Compute $g^* \omega$ and $d \omega$ and verify by direct computations that $g^*(d \omega) = d(g^* \omega)$

(c) Using the calculations of $g^* \omega$ from the previous item, calculate $\int_S \omega$, where S is the upper unit hemisphere in \mathbb{R}^3, i.e. $S = \{(x, y, z) : x^2 + y^2 + z^2 = 1, z \geq 0\}$.

7. (a) Given a smooth map $F : M \rightarrow N$ between two smooth manifolds M and N define the notions of a critical point and a critical value of F.

(b) Define $Z := \{(x, p, q) \in \mathbb{R}^3 : x^3 + px + q = 0\}$.

i. Prove that Z is a smooth submanifold of \mathbb{R}^3;

ii. Define $\pi : Z \rightarrow \mathbb{R}^2$ by $\pi(x, p, q) = (p, q)$ for every $(x, p, q) \in Z$. Prove that (p, q) is a critical value of π if and only of $4p^3 + 27q^2 = 0$.

1
8. Let \(H^2 = \{(x, y) \in \mathbb{R}^2 : y > 0\} \) be the upper half plane with the Riemannian metric \(g = \frac{dx^2 + dy^2}{y^2} \).
Calculate the Gaussian curvature of this metric.

9. (a) Let \(S \) be a smooth tensor field of type \((r, s)\) on a smooth manifold \(M \) and \(X \) be a smooth vector field on \(M \). Give the definition of the Lie derivative \(L_X S \) of the tensor field \(S \) with respect to the vector field \(X \) (Here the definition, which uses certain limit and does not involve Lie brackets, is expected).

(b) Prove that if \(X \) and \(Y \) are two smooth vector fields on \(M \), then \(L_X Y = [X, Y] \), where \([X, Y]\) is the Lie bracket (the commutator) of \(X \) and \(Y \).

(c) Assume that vector fields \(X \) and \(Y \) commute and linearly independent in a neighborhood of point \(p_0 \) in \(M \), i.e., \([X, Y](p) = 0\) and the dimension of \(\text{span}(X(p), Y(p)) \) is equal to 2 for every \(p \) in this neighborhood. Prove that there is a coordinate system \((U, x_1, \ldots, x_n)\) around \(p_0 \) (here \(n = \text{dim} M \)) such that \(X = \frac{\partial}{\partial x_1} \) and \(Y = \frac{\partial}{\partial x_2} \) on \(U \).

10. (a) Assume that \((\omega_1, \ldots, \omega_k)\) is a collection of independent 1-forms defining the distribution \(D \) in an open set \(U \) of \(M \), i.e. \(D(p) = \{X \in T_p M : \omega_1(X) = \ldots = \omega_k(X) = 0\} \) for any \(p \in U \). Describe the involutivity of \(D \) in terms of the forms \(\omega_i \).

(b) Let \(G \) be a Lie group and \(g \) be the corresponding Lie algebra. Recall that the Maurer-Cartan form \(\Omega \) on \(G \) is \(g \)-valued 1-form satisfying \(\Omega_g(v) = (L_{g^{-1}})_* v \) for every \(g \in G \) and \(v \in T_g G \), where \(L_g \) denotes the left translation by \(g \) in \(G \). Prove that \(\Omega \) satisfies
\[
\frac{d}{d\lambda} \Omega(g, \lambda) = -[\Omega(g), \Omega(\lambda)],
\]
where in the right-hand side \([\cdot, \cdot]\) means the brackets in the Lie algebra \(g \).

(c) Here we use the notations of the previous item. Let \(M \) be a smooth manifold endowed with a \(g \)-valued 1-form \(\Phi \) satisfying \(d\Phi(X, Y) + [\Phi(X), \Phi(Y)] = 0 \). Prove that for any \(p \in M \) there exists a neighborhood \(U \) of \(p \) and a smooth map \(F : U \rightarrow G \) such that \(\Phi = F^* \Omega \). (Hint: Consider an appropriate involutive distribution on \(M \times G \) such that the graph of the required map \(F \) is an integral submanifold of this distribution).