TOPOLOGY/GEOMETRY QUALIFYING EXAM

August 2019

- There are 10 problems. Work on all of them and prove your assertions.
- Use a separate sheet of paper for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.

1. Let X be a compact metric space. Show that if $f: X \longrightarrow X$ satisfies $d(f(x), f(y))=d(x, y)$ for all $x, y \in X$ (i.e., if f is an isometry) then f is a homeomorphism.
2. Prove that the metric space X is complete if and only if for every sequence $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \ldots$ of nonempty closed subsets of X such that diameters of A_{n} converge to 0 , the intersection $\bigcap_{i=1}^{\infty} A_{i}$ is non-empty.
3. Let X_{i}, for $i \in I$, be a family of topological spaces, and let $A_{i} \subset X_{i}$ be subsets. Show that $\overline{\prod_{i \in I} A_{i}}=$ $\prod_{i \in I} \overline{A_{i}}$, where closure on the left-hand side of the equality is taken with respect to the product topology on $\prod_{i \in I} X_{i}$.
4. Let X and Y be topological spaces, where Y is compact. Let $p: X \times Y \longrightarrow X$ be the projection onto the first factor. Show that p is closed (i.e., maps each closed subset of $X \times Y$ to a closed subset of X).
5. Show that any map $f: S^{1} \longrightarrow S^{1}$ of degree 1 is homotopic to the identity.
6. (a) Given a differential p-form ω on a manifold N and a smooth map $g: M \rightarrow N$ give the definition of the pull-back $g^{*} \omega$ of the form ω by the map g.
(b) Define $g:\left\{(u, v) \in \mathbb{R}^{2}: u^{2}+v^{2}<1\right\} \rightarrow \mathbb{R}^{3} \backslash\{0\}$ by $(x, y, z)=g(u, v)=\left(u, v, \sqrt{1-u^{2}-v^{2}}\right)$ and

$$
\omega=\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

Compute $g^{*} \omega$ and $d \omega$ and verify by direct computations that $g^{*}(d \omega)=d\left(g^{*} \omega\right)$
(c) Using the calculations of $g^{*} \omega$ from the previous item, calculate $\int_{S} \omega$, where S is the upper unit hemisphere in \mathbb{R}^{3}, i.e. $S=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$.
7. (a) Given a smooth map $F: M \rightarrow N$ between two smooth manifolds M and N define the notions of a critical point and a critical value of F.
(b) Define $\mathcal{Z}:=\left\{(x, p, q) \in \mathbb{R}^{3}: x^{3}+p x+q=0\right\}$.
i. Prove that \mathcal{Z} is a smooth submanifold of \mathbb{R}^{3};
ii. Define $\pi: \mathcal{Z} \rightarrow \mathbb{R}^{2}$ by $\pi(x, p, q)=(p, q)$ for every $(x, p, q) \in \mathcal{Z}$. Prove that (p, q) is a critical value of π if and only of $4 p^{3}+27 q^{2}=0$.
8. Let $H^{2}=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ be the upper half plane with the Riemannian metric $g=\frac{d x^{2}+d y^{2}}{y^{2}}$. Calculate the Gaussian curvature of this metric.
9. (a) Let S be a smooth tensor field of type (r, s) on a smooth manifold M and X be a smooth vector field on M. Give the defintion of the Lie derivative $L_{X} S$ of the tensor field S with respect to the vector field X (Here the definition, which uses certain limit and does not involve Lie brackets, is expected).
(b) Prove that if X and Y are two smooth vector fields on M, then $L_{X} Y=[X, Y]$, where $[X, Y]$ is the Lie bracket (the commutator) of X and Y.
(c) Assume that vector fields X and Y commute and linearly independent in a neighborhood of point p_{0} in M, i.e., $[X, Y](p)=0$ and the dimension of $\operatorname{span}(X(p), Y(p))$ is equal to 2 for every p in this neighborhood. Prove that there is a coordinate system $\left(U, x_{1}, \ldots, x_{n}\right)$ around p_{0} (here $n=\operatorname{dim} M)$ such that $X=\frac{\partial}{\partial x_{1}}$ and $Y=\frac{\partial}{\partial x_{2}}$ on U.
10. (a) Assume that $\left(\omega_{1}, \ldots \omega_{k}\right)$ is a collection of independent 1-forms defining the distribution D in an open set U of M, i.e. $D(p)=\left\{X \in T_{p} M: \omega_{1}(X)=\ldots=\omega_{k}(X)=0\right\}$ for any $p \in U$. Describe the involutivity of D in terms of the forms ω_{i}.
(b) Let G be a Lie group and \mathfrak{g} be the corresponding Lie algebra. Recall that the Maurer-Cartan form Ω on G is the \mathfrak{g}-valued 1-form satisfying $\Omega_{g}(v)=\left(L_{g^{-1}}\right)_{*} v$ for every $g \in G$ and $v \in T_{g} G$, where L_{g} denotes the left translation by g in G. Prove that Ω satisfies

$$
d \Omega(X, Y)=-[\Omega(X), \Omega(Y)]
$$

where in the right-hand side $[\cdot, \cdot]$ means the brackets in the Lie algebra \mathfrak{g}.
(c) Here we use the notations of the previous item. Let M be a smooth manifold endowed with a \mathfrak{g}-valued 1-form Φ satisfying $d \Phi(X, Y)+[\Phi(X), \Phi(Y)]=0$. Prove that for any $p \in M$ there exists a neighborhood U of p and a smooth map $F: U \rightarrow G$ such that $\Phi=F^{*} \Omega$. (Hint: Consider an appropriate involutive distribution on $M \times G$ such that the graph of the required map F is an integral submanifold of this distribution).

