TEXAS A&M UNIVERSITY TOPOLOGY/GEOMETRY QUALIFYING EXAM August 2021

- There are 10 problems. Work on all of them and prove your assertions.
- Use a separate sheet for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.

Q1. Let X_i , $i \in I$ be topological spaces.

- (a) Define the product topology on $\prod_{i \in I} X_i$.
- (b) Let $\pi_i \colon \prod_{i \in I} X_i \to X_i$ be the projection. Prove that π_i is continuous with respect to both the product and the box topology.
- (c) Suppose that Y is a topological space and

$$f\colon Y\to \prod_{i\in I}X_i$$

is a function. Prove that f is continuous with respect to the product topology if and only if for each $i \in I$, π_i is continuous.

(d) Suppose that $I = \mathbb{N}$ and $X_i = \mathbb{R}$ for each $i \in \mathbb{N}$. Consider the function

$$f\colon \mathbb{R}\to \prod_{i\in I} X_i$$

defined via $t \mapsto (t, t, t, ...)$. Is f continuous with respect to the product topology? Is f continuous with respect to the box topology? Explain or prove your answer.

- **Q2.** Let X be a topological space.
 - (a) Let ~ be an equivalence relation on X. Define the quotient topology on X/\sim .
 - (b) Let $g: Y \to X$ and $f: X \to Y$ be continuous functions such that $(f \circ g)(y) = y$ for all $y \in Y$. Prove that $U \subseteq Y$ is open if and only if $f^{-1}(U) \subseteq X$ is open.
- **Q3.** (a) A continuous function $f: X \to Y$ is called perfect if f is closed and the set $f^{-1}(y)$ is compact for each $y \in Y$. Prove that if $f: X \to Y$ is a perfect mapping onto Y, then $f^{-1}(Z)$ is compact for each compact $Z \subset Y$.
 - (b) Prove that if a topological space X is locally compact, Hausdorff, and second countable, then it is metrizable.
- **Q4.** Let X be a topological space.
 - (a) Define "X is compact".
 - (b) Suppose that X is a Hausdorff space and that $A \subseteq X$ is a compact subspace. Prove that if $x \notin A$, then there exist disjoint open subsets of X that contain x and A respectively.
 - (c) Suppose that X is a compact Hausdorff space. Prove that X is regular.
- **Q5.** Let X be a topological space.
 - (a) Define "X is normal".
 - (b) Let X be a connected normal space, which is also Hausdorff and which contains at least two points. Show that X is uncountable.

Q6. Consider the subset in \mathbb{R}^2

$$C := \{ (x, y) \in \mathbb{R}^2 \mid y^2 = \frac{1}{3}x^3 + ax + b \}$$

where a, b are two real constants. Find out for what values of a and b the subset C is a smooth submanifold of \mathbb{R}^2 . (Hint: use the implicit function theorem.)

Q7. Suppose a regular surface in \mathbb{R}^3 has first fundamental form

$$I = E(u, v)du^2 + G(u, v)dv^2$$

where E(u, v) and G(u, v) are smooth (positive-valued) function of u and v. Prove that the Gauss curvature is

$$K = -\frac{1}{2\sqrt{EG}} \left[\frac{\partial}{\partial v} \left(\frac{\partial_v E}{\sqrt{EG}} \right) + \frac{\partial}{\partial u} \left(\frac{\partial_u G}{\sqrt{EG}} \right) \right].$$

Q8. Let M be a smooth manifold. Suppose $F : \Gamma(TM) \to C^{\infty}(M)$ is an \mathbb{R} -linear map¹ such that for all smooth functions $f \in C^{\infty}(M)$ and all smooth vector fields $X \in \Gamma(TM)$

$$F(fX) = fF(X).$$

- (a) Prove the following statement: for a given $p \in M$, if $X_1 = X_2$ over some neighborhood U of p, then $F(X_1)(p) = F(X_2)(p)$.
- (b) Prove that there exists a 1-form $\alpha \in \Omega^1(M)$ such that for all vector fields X,

$$F(X)(p) = \langle \alpha(p), X(p) \rangle_p, \ \forall p \in M.$$

Here $\langle \cdot, \cdot \rangle_p$ is the pairing between tangent and cotangent vectors at the point p. Q9. Consider the complement of two points of the plane

$$M := \mathbb{R}^2 \setminus \{(1,0), (-1,0)\}.$$

For a given pair of real numbers (a_-, a_+) , find a differential 1-form fdx + gdy on M whose integral along the radius ϵ circle centered at $(\pm 1, 0)$ (oriented counterclockwise, $\epsilon > 0$ is an arbitrary small number) is a_{\pm} .

Q10. Let M be a smooth manifold. Suppose $\gamma : [0, +\infty) \to M$ is an integral curve of a smooth vector field X on M and suppose $\gamma(t)$ converges to a point $p \in M$ as $t \to \infty$. Prove that X(p) = 0.

 $^{{}^{1}\}Gamma(TM)$ is the set of smooth vector fields on M and $C^{\infty}(M)$ is the set of smooth functions on M. They are both infinite-dimensional vector spaces over \mathbb{R} .