TEXAS A&M UNIVERSITY TOPOLOGY/GEOMETRY QUALIFYING EXAM August 2022

- There are 10 problems. Work on all of them and prove your assertions.
- Use a separate sheet for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.
 - 1. Suppose that (X, d) is a compact metric space.
 - (a) Let f be a continuous function on X. Prove that f is uniformly continuous on X.
 - (b) Let $C(X) = \{f \mid f : X \to \mathbb{R} \text{ is continuous}\}$. The supremum norm on C(X) is given by

$$||f|| = \sup_{x \in X} |f(x)|.$$

Prove that (C(X), || ||) is a **complete** norm space.

- (c) Given two metrics space (X_1, d_1) and (X_2, d_2) that are homeomorphic to each other, if (X_1, d_1) is complete, does it imply (X_2, d_2) is also complete?
- 2. Suppose that (X, d) is a metric space and T is a map from X to itself and

$$d(T(x), T(y)) < \lambda d(x, y), 0 < \lambda \le 1.$$

for any $x, y \in X$.

- (a) If X is a compact metric space, prove that T has a fixed point;
- (b) If X is a noncompact complete metric space, prove that T has a fixed point if $\lambda < 1$.
- 3. Let X be a topological space.
 - (a) If X is path connected, is X connected? Prove or disprove.
 - (b) If X is connected, is X path connected? Prove or disprove.
- 4. Let $\mathbb{R}P^2$ be the real projective space and $T^2 = S^1 \times S^1$ the torus. Prove that any continuous map $f : \mathbb{R}P^2 \to T^2$ is null-homopotic.
- 5. Suppose that X is a path connected topological space whose universal cover is compact. Prove that $\pi_1(X)$ is finite.
- 6. (a) Formulate the Implicit Function theorem.

- (b) Let p and q are nonnegative integers such that p + q = n and $I_{p,q}$ be the diagonal $n \times n$ matrix with (i, i) entry equal to 1 if $1 \le i \le p$ and to -1 if $p + 1 \le i \le n$. Prove that the set $O_{p,q}$ of all $n \times n$ matrices A such that $A^T I_{p,q} A = I_{p,q}$ is an embedded submanifold of the space of all $n \times n$ -matrices ($\cong \mathbb{R}^{n^2}$). What is the dimension of this submanifold?
- (c) Describe explicitly the tangent space to $O_{p,q}$ at the identity.
- 7. (a) Let $f: M \to N$ be a smooth map and ω be a differential *p*-form on *N*. Define the pullback $f^*\omega$.
 - (b) Given a differential *p*-form ω and a vector field X on a manifold M give the definition of the interior product $i_X \omega$.
 - (c) Given a vector field X and a differential p-form ω on a manifold M give the definition of the Lie derivative $L_X \omega$ of ω with respect to the vector field X.
 - (d) Let M be connected and $\pi: M \times N \to N$ be the natural projection. Prove that a differential form ω on $M \times N$ is equal to $\pi^* \alpha$ for some differential p-form on N if and only if and only if $i_X \omega = 0$ and $L_X \omega = 0$ for every vector field X on $M \times N$ such that $d\pi(X(m, n)) = 0$ at each point $(m, n) \in M \times N$.
- 8. (a) Given a Lie group G with the identity e describe how to endow the space T_eG with the structure of a Lie algebra.
 - (b) Prove that for a matrix Lie group (i.e. for a Lie subgroup of $GL(n, \mathbb{R})$) the operation of Lie brackets on its Lie algebra coincides with the matrix commutator.
 - (c) Let $E_n^+(\mathbb{R})$ be the group of the rigid motions of \mathbb{R}^n , i.e. the group of transformation of the form $x \mapsto a + Ax$, $a \in \mathbb{R}^n$, and $A \in SO_n(\mathbb{R})$ with operation of composition. Describe the Lie algebra of $E_n^+(\mathbb{R})$.

Hint: Embed $E_n^+(\mathbb{R})$ into $\operatorname{GL}(n+1,\mathbb{R})$.

- 9. Let $\operatorname{Gr}_2(\mathbb{R}^4)$ be the set of all 2-dimensional subspaces in \mathbb{R}^4 . Describe as completely as possible how to endow $\operatorname{Gr}_2(\mathbb{R}^4)$ with the structure of smooth manifold.
- (a) Give the definitions of an involutive distribution and of an integral submanifold of a distribution in terms of a local basis of vector fields.
 - (b) Give at least one characterization of an involution in terms of defining forms.
 - (c) Let M and N be 2-dimensional smooth manifolds. Let (α_1, α_2) be a coframe on M and (ω_1, ω_2) be a coframe on N such that there are constants k_1 and k_2 so that

$$d\alpha_1 = k_1 \,\alpha_1 \wedge \alpha_2, \qquad d\alpha_2 = k_2 \,\alpha_1 \wedge \alpha_2, \qquad d\omega_1 = k_1 \,\omega_1 \wedge \omega_2, \qquad d\omega_2 = k_2 \,\omega_1 \wedge \omega_2.$$

Prove that for every $q \in M$ and $p \in N$ there exist a neighborhood U of q in M, a neighborhood V of p in N, and a diffeomorphism $F: U \to V$ such that $\alpha_1 = F^* \omega_1, \quad \alpha_2 = F^* \omega_2$. in U.

Hint: Let $\pi: M \times N \to M$ and $p: M \times N \to N$ are canonical projections. Work with the distribution on $M \times N$ defined by 1-forms $\pi^* \alpha_1 - p^* \omega_1$ and $\pi^* \alpha_2 - p^* \omega_2$.