TEXAS A\&M UNIVERSITY
 TOPOLOGY/GEOMETRY QUALIFYING EXAM

August 2022

- There are 10 problems. Work on all of them and prove your assertions.
- Use a separate sheet for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.

1. Suppose that (X, d) is a compact metric space.
(a) Let f be a continuous function on X. Prove that f is uniformly continuous on X.
(b) Let $C(X)=\{f \mid f: X \rightarrow \mathbb{R}$ is coutinuous $\}$. The supremum norm on $C(X)$ is given by

$$
\|f\|=\sup _{x \in X}|f(x)| .
$$

Prove that $(C(X),\| \|)$ is a complete norm space.
(c) Given two metrics space $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ that are homeomorphic to each other, if $\left(X_{1}, d_{1}\right)$ is complete, does it imply $\left(X_{2}, d_{2}\right)$ is also complete?
2. Suppose that (X, d) is a metric space and T is a map from X to itself and

$$
d(T(x), T(y))<\lambda d(x, y), 0<\lambda \leq 1
$$

for any $x, y \in X$.
(a) If X is a compact metric space, prove that T has a fixed point;
(b) If X is a noncompact complete metric space, prove that T has a fixed point if $\lambda<1$.
3. Let X be a topological space.
(a) If X is path connected, is X connected? Prove or disprove.
(b) If X is connected, is X path connected? Prove or disprove.
4. Let $\mathbb{R} P^{2}$ be the real projective space and $T^{2}=S^{1} \times S^{1}$ the torus. Prove that any continuous map $f: \mathbb{R} P^{2} \rightarrow T^{2}$ is null-homopotic.
5. Suppose that X is a path connected topological space whose universal cover is compact. Prove that $\pi_{1}(X)$ is finite.
6. (a) Formulate the Implicit Function theorem.
(b) Let p and q are nonnegative integers such that $p+q=n$ and $I_{p, q}$ be the diagonal $n \times n$ matrix with (i, i) entry equal to 1 if $1 \leq i \leq p$ and to -1 if $p+1 \leq i \leq n$. Prove that the set $O_{p, q}$ of all $n \times n$ matrices A such that $A^{T} I_{p, q} A=I_{p, q}$ is an embedded submanifold of the space of all $n \times n$-matrices $\left(\cong \mathrm{R}^{n^{2}}\right)$. What is the dimension of this submanifold?
(c) Describe explicitly the tangent space to $O_{p, q}$ at the identity.
7. (a) Let $f: M \rightarrow N$ be a smooth map and ω be a differential p-form on N. Define the pullback $f^{*} \omega$.
(b) Given a differential p-form ω and a vector field X on a manifold M give the definition of the interior product $i_{X} \omega$.
(c) Given a vector field X and a differential p-form ω on a manifold M give the definition of the Lie derivative $L_{X} \omega$ of ω with respect to the vector field X.
(d) Let M be connected and $\pi: M \times N \rightarrow N$ be the natural projection. Prove that a differential form ω on $M \times N$ is equal to $\pi^{*} \alpha$ for some differential p-form on N if and only if and only if $i_{X} \omega=0$ and $L_{X} \omega=0$ for every vector field X on $M \times N$ such that $d \pi(X(m, n))=0$ at each point $(m, n) \in M \times N$.
8. (a) Given a Lie group G with the identity e describe how to endow the space $T_{e} G$ with the structure of a Lie algebra.
(b) Prove that for a matrix Lie group (i.e. for a Lie subgroup of $G L(n, \mathbb{R})$) the operation of Lie brackets on its Lie algebra coincides with the matrix commutator.
(c) Let $E_{n}^{+}(\mathbb{R})$ be the group of the rigid motions of \mathbb{R}^{n}, i.e. the group of transformation of the form $x \mapsto a+A x, a \in \mathbb{R}^{n}$, and $A \in S O_{n}(\mathbb{R})$ with operation of composition. Describe the Lie algebra of $E_{n}^{+}(\mathbb{R})$.

Hint: Embed $E_{n}^{+}(\mathbb{R})$ into $\mathrm{GL}(n+1, \mathbb{R})$.
9. Let $\mathrm{Gr}_{2}\left(\mathbb{R}^{4}\right)$ be the set of all 2-dimensional subspaces in \mathbb{R}^{4}. Describe as completely as possible how to endow $\operatorname{Gr}_{2}\left(\mathbb{R}^{4}\right)$ with the structure of smooth manifold.
10. (a) Give the definitions of an involutive distribution and of an integral submanifold of a distribution in terms of a local basis of vector fields.
(b) Give at least one characterization of an involutve distribution in terms of defining forms.
(c) Let M and N be 2-dimensional smooth manifolds. Let $\left(\alpha_{1}, \alpha_{2}\right)$ be a coframe on M and $\left(\omega_{1}, \omega_{2}\right)$ be a coframe on N such that there are constants k_{1} and k_{2} so that
$d \alpha_{1}=k_{1} \alpha_{1} \wedge \alpha_{2}, \quad d \alpha_{2}=k_{2} \alpha_{1} \wedge \alpha_{2}, \quad d \omega_{1}=k_{1} \omega_{1} \wedge \omega_{2}, \quad d \omega_{2}=k_{2} \omega_{1} \wedge \omega_{2}$.
Prove that for every $q \in M$ and $p \in N$ there exist a neighborhood U of q in M, a neighborhood V of p in N, and a diffeomorphism $F: U \rightarrow V$ such that $\alpha_{1}=F^{*} \omega_{1}, \quad \alpha_{2}=F^{*} \omega_{2}$. in U.
Hint: Let $\pi: M \times N \rightarrow M$ and $p: M \times N \rightarrow N$ are canonical projections. Work with the distribution on $M \times N$ defined by 1 -forms $\pi^{*} \alpha_{1}-p^{*} \omega_{1}$ and $\pi^{*} \alpha_{2}-p^{*} \omega_{2}$.

